
Introduction to Application Programming (z/OS)

Introduction to Application Programming (z/OS) - Course Objectives

On successful completion of this class, the student should be able to:

1. Describe the major issues in program design

2. Describe inputs and outputs for a program, down to the field level

3. Design program logic for basic programs

4. Describe the steps necessary to complete the process to code,
compile, link, and test a program

5. Describe these fundamental data types of IBM mainframe machines:
character, packed decimal, binary

6. Convert numbers between binary and decimal and hexadecimal

7. Perform basic arithemtic with binary and hexadecimal numbers.

1

A010 / 2 Days These Materials Copyright ã 2024 by Steven H. Comstock V2.6

Introduction to Application Programming (z/OS) - Topical Outline

Day One

Introduction To Application Programming
Computer Applications
The Application Programmer's Job
Platforms
Program functions
Program design
The Output - Describing What We Want
The Input - Describing What We've Got
Data
Data organizing
Pseudo-descriptions
Exercise: Describing data ... 29

Program Design
Computer Systems Organization
Buffers and Work Areas
Pseudo-Code
Goto
Loops
Conditions
The End of File Condition
A Sample Program
Exercise: Designing a Program .. 49

Testing
Pseudo-Testing - Playing Computer
Padding / Filler
Initial Values
Coding - Converting Your Design to Code
Sample Code

COBOL
PL/I
C
Assembler

Exercise: Pseudo-Testing and Finalizing the Design 74

2

A010 / 2 Days These Materials Copyright ã 2024 by Steven H. Comstock V2.6

Introduction to Application Programming (z/OS) - Topical Outline, p.2

Day One, continued

The Next Steps
TSO
ISPF
Keying in Your Code
Making Your Code Executable
Running Programs
Testing Your Program
Error Handling
Cutting Over
Mainentance

Day Two

Behind The Scenes - Hardware
Modern IBM Mainframe Computer System
A CPU and Memory
Binary - The Language of Computers
Exercise: Number Conversions .. 105

Computer Memory
Data Representation
Hexadecimal
Exercise: Number Conversions .. 118

Data Formats
Memory Addressing

Behind The Scenes - Data
Tape Layout
A Sequential Data Set
DASD Concepts
A Partitioned Data Set
A Catalog

3

A010 / 2 Days These Materials Copyright ã 2024 by Steven H. Comstock V2.6

Introduction to Application Programming (z/OS) - Topical Outline, p.3

Day Two, continued

Behind The Scenes - Software
Virtual Storage Concepts
z/OS Architecture
Batch Application Environments
Online Application Environments

What's Next?

4

A010 / 2 Days These Materials Copyright ã 2024 by Steven H. Comstock V2.6

Introduction

Copyright ã 2024 by Steven H. Comstock 5 Introduction

Section Preview

p Introduction To Application Programming

¨ Computer Applications

¨ The Application Programmer Job

¨ Platforms

¨ Program Functions

¨ Program Design

¨ The Output - Describing What We Want

¨ The Input - Describing What We've Got

¨ Data

¨ Data Organizing

¨ Pseudo-Descriptions

¨ Describing Data (Excercise)

Computer Applications

Work run on a computer to accomplish a business
function, or to support a business function

¨ Financials

¨ Accounting

¨ Planning

¨ Research and Development

¨ Product Design

¨ Manufacturing / Production

¨ Marketing / Sales

¨ Customer Services / Support

¨ Application Utilities (ancillary services)

7 Data Entry / Validation / Storage

7 Data Modification

7 Data Backup / Recovery

Copyright ã 2024 by Steven H. Comstock 6 Introduction

The Application Programmer Job

p The work of an application programmer includes ...

¨ Analyzing user requirements

¨ Refining requirements

¨ Researching data needs

¨ Designing files (data layout)

¨ Designing application flow

¨ Designing programs

¨ Coding programs

¨ Testing programs

¨ Documenting programs

¨ Training users on how to use programs

¨ Maintaining programs

¨ And, of course, the usual helping of politics, meetings,
communication, ego-salving, etc., etc., ...

p In this course, we focus just on creating new programs: part of the
technical aspects of the job

Copyright ã 2024 by Steven H. Comstock 7 Introduction

Platforms

Applications, in a computer system environment, are built on existing,
available bases, or platforms

p An application is made up of component pieces, called programs

p In olden times (ten or twenty years ago), application programs
rested directly on the Operating System

p In modern times, applications are built upon an Application
Environment

7 The Application Environment takes care of using the Operating
System services to get work done

p Finally, the Operating System rests on the underlying hardware
platform (IBM mainframes in this seminar)

Copyright ã 2024 by Steven H. Comstock 8 Introduction

Hardware: Cpu, Memory, Peripherals

Operating System: Base And Components

Application Environment: Interfaces

Application: Programs
ì
ï
ï
ï
í
ï
ï
ï
î

Software

Programming Languages

p There are hundreds of programming languages to choose from in
the world, but in the IBM mainframe application programming niche,
programs are generally written in these languages

¨ COBOL (COmmon Business Oriented Language)

¨ PL/I (Programming Language / I)

¨ C

¨ Assembler Language (sometimes called ALC or BAL)

p We will be giving examples of programs written in all of these
languages, but we will focus most on COBOL since that is far and
away the most widely used language in this environment

p A programming language has a limited vocabulary and syntax that
can be combined in a great many ways to produce the desired
results

¨ A computer cannot directly execute the instructions written in a
programming language: a computer can only execute machine
instructions

¨ So computer programs need to be translated into a set of
machine instructions (we say the program needs to be compiled)

Copyright ã 2024 by Steven H. Comstock 9 Introduction

Program Functions

p Every business application program performs one (or more) of these
functions:

¨ Read input data from tape, disk, a terminal, or some other
external device

¨ Locate related data, on tape or disk or other external medium

¨ Process data

7 Display data on screen (real time, interactive) or hardcopy
(reports, invoices, bills, statements)

7 Add new data to data already an external medium

7 Update (change, modify) existing data on an external medium

7 Delete data from an external medium

p Note that data are generally organized as records in files (more later)

p A collection of data and the programs to process the data is called a
computer application

Copyright ã 2024 by Steven H. Comstock 10 Introduction

Program Design

p Before we can write a program, we first have to design it, which
traditionally has three basic parts:

¨ We need to know what the user wants (what is the output, the
result, of the program)

¨ We need to know what's already available (where is the input, the
data we need in order to produce the output)

¨ We need to figure out how to get from the starting situation to
the desired end point (what process must we go through to get
where we want to go)

p Some people make an analogy between a program and a recipe

¨ A recipe describes the dish (output), the ingredients (input), and
the process (directions) to produce the dish

¨ A program does the same for data

¨ The analogy works pretty well, but don't get too carried away,
because we shall see some places where the analogy breaks
down

Copyright ã 2024 by Steven H. Comstock 11 Introduction

The Output - Describing What We Want

Data

p So, how do you describe output?

It depends

¨ For a data display, we can draw a map of a terminal screen and
describe where each piece of data goes, how it should be
formatted, and so on ...

¨ For a report, we draw a sample page layout

¨ For an update to files on tape or disk, we describe the data
layouts and how these layouts are impacted by our program

Copyright ã 2024 by Steven H. Comstock 12 Data

mm/dd/yy In ven tory Sta tus Re port p. nn

P_no De scrip tion Unit Price

xxxxx xxxxxxxxxxxxxxxxx zz,zz9.99
xxxxx xxxxxxxxxxxxxxxxx zz,zz9.99
xxxxx xxxxxxxxxxxxxxxxx zz,zz9.99
xxxxx xxxxxxxxxxxxxxxxx zz,zz9.99
xxxxx xxxxxxxxxxxxxxxxx zz,zz9.99
xxxxx xxxxxxxxxxxxxxxxx zz,zz9.99
xxxxx xxxxxxxxxxxxxxxxx zz,zz9.99

The Input - Describing What We've Got

p Similarly, we have data available to us on tape or disk and we have
the capability to accept data from a terminal

p How do we describe this data?

¨ Input data on tape and disk are described in the same ways as
output data going to tape or disk: we describe the record layouts

¨ Input data from a terminal is described as individual pieces:
fields (more detail in just a minute)

p Let us try to get this more concrete ...

Copyright ã 2024 by Steven H. Comstock 13 Data

Data

p In the non-computer environment, data is most often on paper

¨ Hand-written or typed sheets of paper / forms

¨ Informal jottings on a scrap of paper

¨ Could be photographs, pictures, or audio or video tapes!

p Really organized people even group data into folders

¨ Maybe even use credenzas, filing cabinets, storage bins, and so
on

Copyright ã 2024 by Steven H. Comstock 14 Data

On the eve of the discovery of the new
world, the commander did not sleep.

Some unknown force moved her forward,
preparing her for the momentous event
about to happen.

Call me at 8 and don't be late. We got
some heavy dancing to do.

On the eve of the future, the universe
suddenly stopped.

now is the
time for
all good
people to
come to

Data Organizing

p Computers work best with data that is structured and organized

¨ And in machine-readable form

p The basic structuring of data for use in a computer can be thought
of as making lists

¨ The data stored on a piece of paper that represents an item in
inventory, for example, will be one entry in the list:

Copyright ã 2024 by Steven H. Comstock 15 Data

Inventory Item

Part Number: TUB-345/X
Quantity on hand: 50
Unit Price: 13.225
Description: Pink Tubing
Date Last Order: 06/05/20xx
Quantity Last Ordered: 30
Last Price: 12.285
Supplier: BTRX-88-01
 . . .

TUB-345/X00050013225Pink Tubing 06/05/20xx . . .

Records and Files

p The collection of all our inventory items in this list, then, might look
like this:

¨ Each “strip” or “line” represents one of our items in inventory

7 We call each of these entities a record

7 We call the entire list, the list as a whole, a file

7 In the IBM mainframe environment, we use the term data set the
same as file

p In the computer world, files are stored on magnetic disk or tape, or
on optical media such as CDs (compact disks)

¨ Files are given names, and the file names themselves are stored
in catalogs, so the system can locate the files when our
programs are ready to process the records

Copyright ã 2024 by Steven H. Comstock 16 Data

Fields

p Records are composed of fields, the individual pieces of information
that make up the record

¨ For example, in an inventory data set we have records that have
these fields:

7 Part number

7 Quantity on hand

7 Unit price

7 and so on

p Each field describes some characteristic of the object that a record
describes

Copyright ã 2024 by Steven H. Comstock 17 Data

Field Size

p To specify the contents of a record, we need to know what fields the
record contains, and how many characters each field contains

p How big is each field?

“It depends”

¨ An item description field, for example, only needs to be five
characters long if the description is “Fates”

¨ But if the description is “Slightly used, highly burnished, plaid
zinc and copper noodles”, we will need considerably more space

p While computers can handle varying size fields, programming is
simpler and performance is better if we work with fixed length fields

¨ So we normally select the maximum size we want to allow for a
field and use that

¨ This means sometimes you have to make some compromises,
such as abbreviating the data in a field

7 For example, if we chose a field length of 30 for our item
description, we would have to enter the second item above using
abbreviations, something like this:

 “Used,brnshd,pld,Zn+Cu noodles”

Copyright ã 2024 by Steven H. Comstock 18 Data

Records and Fields

p So a record is made up of fields

¨ And each record in a file is typically composed of the same
fields - that is, each record usually has the same general
structure

¨ Visually, it might look something like this:

Copyright ã 2024 by Steven H. Comstock 19 Data

Describing Fields

p To describe a record, you list the fields that make up the record, in
the order the fields appear in the record, specifying at least

Field name

¨ Rules for names in a minute

Field location

¨ Where in the record is the field located? (starting location)

Field size

¨ Length, in characters or bytes

7 The sum of the field sizes is the size of the record

Copyright ã 2024 by Steven H. Comstock 20 Data

Field Names

p Everything we do in computers has to be precise

¨ Including assigning names

In a program:

p Every file has to have a name unique within the program

¨ Each record in the file has to be described as a structure
composed of fields

p Every record or data structure has to have a name unique relative to
a file description

p Every field has to have a name unique within a record or data
structure (there is one exception we discuss later)

p Also, there may be fields that exist independent of any record
structure (an item used to hold a calculation, for example)

¨ Each independent data item must have a name unique within the
program

Copyright ã 2024 by Steven H. Comstock 21 Data

Field Names, 2

p The rules for names also vary depending on the programming
language you are coding in

¨ Maximum length of a name varies from 8 characters to over 60
characters (COBOL: 30)

¨ Characters allowed in a name are usually alphabetic (A-Z) or
numeric (0-9) (for example: Description, AddressLine2)

¨ Most languages allow certain special characters to appear in
names

7 But spaces (blanks) are never allowed in a name in a mainframe
environment

â So most languages designate a "break character" that can
separate the parts that would normally be done by a space

ä In COBOL, a dash, so, for example: Unit-Price

ä In PL/I, Assembler, and C, an underscore: Unit_Price (note
that in the latest COBOL compilers, you may use an
underscore in a name)

¨ Capitalization of names matters in C, but not in most other
languages

7 So PartNumber and PARTNUMBER would be considered to be
the same field name, except in C

Copyright ã 2024 by Steven H. Comstock 22 Data

Record Structures

p When a number of fields are related, such as the fields that make up
a record, we generally group them together under a record name

¨ For example, a personnel file might contain employee records,
and these records be might be made up of fields such as these

Sample Fields and Data Structure Description

Employee-record.
Employee-number (6 characters)
Last-name (15 characters)
First-name (12 characters)
Middle-init (1 character)
Hire-date.

Hire-year (4 characters)
Hire-month (2 characters)
Hire-day (2 characters)

Salary-type (2 characters)
Salary (9 characters, all numeric digits,

including 2 digits for cents)
AddressLine1 (40 characters)
AddressLine2 (40 characters)
City (35 characters)
State (2 characters)
Country (35 characters)
MailCode (15 characters)

¨ Notice names, structures, sub-structures, and how items are
described

Copyright ã 2024 by Steven H. Comstock 23 Data

Principle of Completeness

p Suppose you are describing records in a file

¨ And that the records contain fifty different fields

¨ But for this program you are only referencing three fields

7 You must still account for every character in the record, because
data are stored on tape or disk or printers in complete records

7 Your program is always passed a complete record on input

7 Your program always writes a complete record on output

¨ We call this the principle of completeness

Copyright ã 2024 by Steven H. Comstock 24 Data

Naming Unreferenced Fields

p As we just saw, even if your program is not referencing every field
you still need to account for every field - the space it takes up

p But if a field is unreferenced in your program you can give it a "don't
care" kind of name, like "Unused"

¨ But since field names must be unique within a structure, you
might have to use names like "Unused01", "Unused02", and so
on

p Except that COBOL allows you to use the reserved word FILLER for
fields that won't be referenced in a program

¨ And with the latest version of COBOL you can even omit the
field name for unreferenced fields (although you must still
account for all the space in your record)

p Also, Assembler lets you reserve space for fields without assigning
a name of any kind

Copyright ã 2024 by Steven H. Comstock 25 Data

Other Data Structures

p Normally in a program you need to define (or declare or describe) a
structure for every record in every file the program is processing

p And, you may use structures in your program that are not related to
particular files

¨ Intermediate work areas, for examples, or tables kept in memory
while you work

¨ These, too, if used in your program, must be described in your
program

p Defining (describing) data gives the compiler information it needs
when it is translating your source program into machine instructions

p Every independent item and every data structure must be declared

Copyright ã 2024 by Steven H. Comstock 26 Data

Declaring Files

p In addition to declaring all the data items used in your program, you
must also define the files

¨ This helps tie together records in your program to files outside
of your program

p Declaring a file typically includes

¨ Assigning a file name for use inside your program

7 Remember, file names must be unique within a program

¨ Specifying the characteristics of the file

7 The level of detail needed depends on the programming
language

¨ Identifying which records come from / go to which file

7 So the compiler can make sure data flows between buffers and
work areas properly

Copyright ã 2024 by Steven H. Comstock 27 Data

Pseudo-Descriptions

p In the data design process, you don't have to follow particular
language rules for names for files, records, and data items

¨ Just rough things out

¨ You might call this a "pseudo-description" (a "sort of"
description)

¨ Just so you can focus on design and not worry about syntax

p However, if you know you will be coding in a particular language it is
probably a good idea to follow the rules for names for that language

¨ This way, you don't need to change much when moving from
design to coding

Copyright ã 2024 by Steven H. Comstock 28 Data

Exercise: Describing Data

For our first exercise, you have been assigned the task of creating a report
that lists every item in our inventory file.

The instructor is to play the role of user, the warehouse manager. You may
ask any question you think relevant to the task at hand. Remember that the
instructor is playing a role, and will answer questions in the way the user
might answer them.

When you are done, write down, on this page and the next, the contents of
the report (along with a sketch), and the description of where the output data
comes from.

Copyright ã 2024 by Steven H. Comstock 29 Data

