
Introduction to TSO and REXX APIs

The following terms that may appear in these course materials are trademarks or registered
trademarks:

Trademarks of the International Business Machines Corporation:

AIX, BookManager,CICS, DB2, DRDA, DS8000, ESCON, FICON, HiperSockets, IBM, ibm.com, IMS,
Language Environment, MQSeries, MVS, NetView, OS/400, POWER7, PR/SM, Processor Resource
/ Systems Manager, OS/390, OS/400, Parallel Sysplex, QMF, RACF, Redbooks, RMF, RS/6000,
SOMobjects, S/390, System z, System z9, System z10, VisualAge, VTAM, WebSphere, z/OS, z/VM,
z/VSE, z/Architecture, zEnterprise, zSeries, z9, z10

Trademarks of Microsoft Corp.: Microsoft, Windows

Trademarks of Micro Focus Corp.: Micro Focus

Trademark of American National Standards Institute: ANSI

Trademarks of America Online, Inc.: America Online, AOL

Trademarks of Quercus Systems: Personal REXX, REXXTERM

Trademark of Chicago-Soft, Ltd: MVS/QuickRef

Trademark of Phoenix Software International: (E)JES

Trademark of Triangle Systems: IOF

Trademarl of Syncsort Corp.: SyncSort

Trademark of CA: Endevor

Trademark of Serena Software International: ChangeMan

Registered Trademarks of Institute of Electrical and Electronic Engineers: IEEE, POSIX

Registered Trademarks of Corel Corporation: Corel, CorelDRAW, Corel VENTURA

Registered Trademark of Oracle Corporation: Oracle

Registered Trademark of The Open Group: UNIX

Trademarks of Sun Microsystems, Inc.: Java, EmbeddedJava, Enterprise JavaBeans, EJB, Java
Naming and Directory Interface, JavaBeans, JavaOS, JavaScript, JavaServer, JavaServerPages,
JSP, JDBC, JDK, JVM, J2EE, Sun Microsystems, 100% Pure Java

Registered Trademark of Linus Torvalds: LINUX

Registered Trademark of Unicode, Inc.: Unicode

Trademarks held on behalf of World Wide Web Consortium: W3C, XHTML, XSL, WebFonts

Trademark of Object Management Group: CORBA

Trademarks of Apple Computer: QuickTime, Safari

Trademarks of Adobe Systems, Inc.: Macromedia, PDF, Shockwave, Flash

Trademark of The Eclipse Foundation: Eclipse

Introduction to TSO and REXX APIs - Course Objectives

On successful completion of this class, the student, with the aid of the
appropriate reference materials, should be able to:

1. Code application programs in Assembler, COBOL, PL/I, or C that run
under TSO (including batch TSO) and that can:

Accept and use parm data
Set normal and abnormal return / completion codes
Issue TSO commands (using IKJEFTSR)
Access, modify, create, and delete REXX variables (using IKJCT441

and IRXEXCOM)
Work with data in DB2 data bases (using DSN)

2. Use TSO and REXX EXECs to run programs in the Foreground or the
Background (batch)

3. Run EXEC's in the batch, in TSO/E-integrated address spaces
(IKJEFT01) or non-TSO/E-integrated address spaces (IRXJCL)

4. Code programs in Assembler, COBOL, PL/I, or C that can be invoked
using the TSO REXX facilities for LINK and ATTACH (address link,
address attach, address linkmvs, address attchmvs, address linkpgm,
address attchpgm), accepting parm data in the multiple various formats
provided by these alternatives.

1

A780 / 2 Days These Materials Copyright � 2012 by Steven H. Comstock V2.1

Introduction to TSO and REXX APIs - Topical Outline

Day One

Introduction
Basic Program Interfaces - Batch
Accessing the data in the PARM field on the JCL EXEC statement
Getting access to external file data
Operator Console I/O
Setting normal termination codes
Setting abnormal termination codes
Computer Exercise: Running Batch Programs 22

Basic Program Interfaces - Native TSO
Running programs in foreground
Allocating data sets
TSO CALL and parm data
Terminal I/O
TSO WHEN command
FREEing data sets
Computer Exercise: Running Programs Under Native TSO 32

Program Interfaces - TSO Commands
The TSO Service Facility: IKJEFTSR / TSOLNK
Addressing modes and residency modes
Invoking IKJEFTSR from Assembler, COBOL, PL/I, and C
Computer Exercise: Issuing TSO Commands From Compiled Programs 48

Basic Program Interfaces - TSO REXX
REXX, host commands, and quotes
Specifying data set names in an exec
More on passing parameters
REXX 'CALL; vs TSO 'CALL'
TSOEXEC command
Computer Exercise: CALLing a Program From an Exec 60

Accessing REXX Variables From Compiled Programs
The IKJCT441 Service
Calling IKJCT441 from Assembler, COBOL, PL/I, and C
Computer Exercise: Using IKJCT441 Services 79

2

A780 / 2 Days These Materials Copyright � 2012 by Steven H. Comstock V2.1

Introduction to TSO and REXX APIs - Topical Outline, 2

Day Two

Interfaces to Programs That Access DB2 Databases
The DSN environment
The DSN 'RUN' subcommand
Running DSN from REXX execs
The DSNREXX Interface
Computer Exercise: (Optional) Working With DB2 Data From an Exec 89

Dialog Manager (ISPF) Considerations
The ISPEXEC Interface
Program functions and variables

REXX Dynamic Program Linkages
ADDRESS LINK and ADDRESS ATTACH
Program search
Code invoked by ADDRESS LINK and ADDRESS ATTACH

* Assembler, COBOL, PL/I, and C
Code invoked by ADDRESS LINKMVS and ADDRESS ATTCHMVS

* Assembler, COBOL, PL/I, and C
Code invoked by ADDRESS LINKPGM and ADDRESS ATTCHPGM

* Assembler, COBOL, PL/I, and C
Program Calling Summary
Computer Exercise: LINKing to Programs 129

Running EXECs in the batch
TSO/E-Integrated Address Spaces (IKJEFT01)
Non-TSO/E-Integrated Address Spaces (IRXJCL)
The IKJEFT1A and IKJEFT1B entry points
The IKJTSOEV Service
Calling IKJTSOEV from Assembler, COBOL, PL/I, and C
Computer Exercise: Running EXECs in Batch 149

Accessing REXX Variables From Compiled Programs
The IRXEXCOM Service
SHVBLOCK - the Shared Variable Block
Calling IRXEXCOM from Assembler, COBOL, PL/I, and C
Computer Exercise: Using IRXEXCOM Services 166

Summary

3

A780 / 2 Days These Materials Copyright � 2012 by Steven H. Comstock V2.1

Course Overview

Overview

� This course is for programmers who need to design, code, debug, or
maintain application programs that run under:

Native TSO - TSO READY prompt

REXX execs invoked from Native TSO

REXX execs invoked under ISPF

� In addition, we explore how to run TSO commands and REXX execs
from compiled programs running in batch or from TSO READY or
under ISPF

� And how to access, change, create, and delete REXX variables
from a compiled program invoked from an exec running in batch
or TSO

� Our focus is the programming interfaces to TSO and REXX from
Assembler, COBOL, PL/I, and C

Copyright � 2012 by Steven H. Comstock 4 Overview

TSO-Based Applications

� You may code parts of TSO-based applications in REXX:

� To gain access to TSO commands and services including

� File create, repro, print, rename, delete

� Provide an environment for programs that access DB2 data

� To capture sets of commands in procedures and use symbolic
substitution capabilities

� To use the parsing, compound symbol, EXECIO, LINK, and
ATTACH facilities of REXX

� You may code parts of such applications in compiled (or Assembled)
programs:

� For performance reasons

� To use non-sequential I/O, including access to DB2 data

� To use system services such as Data In Virtual, WAIT / POST,
ENQ / DEQ, and so on

� To work with records in VSAM files

� To use Language Environment (LE) services

Copyright � 2012 by Steven H. Comstock 5 Overview

TSO, REXX, and Program Interfaces

� In this course we shall concentrate on the skills necessary to
implement the following techniques:

� Running programs (written in Assembler, COBOL, PL/I, or C)
using TSO CALL

� Including passing parameters, handling termination codes, and
working with files (allocation and disposition)

� Issuing TSO commands from programs running in a TSO
environment (either from TSO READY or TSO running in batch)

� Intercepting abend codes and reason codes produced by a
program running from an exec under TSO

� Creating, referencing, altering, or deleting REXX variables from a
program invoked from an exec

� Including running under TSO or in a non-TSO address space

� Running programs using TSO DSN

� Including accessing DB2 databases and communicating values to
or from an exec

� Coding programs to be invoked by REXX ADDRESS LINK or
ADDRESS ATTACH

� Coding programs to be invoked by any of ADDRESS: LINKMVS,
LINKPGM, ATTCHMVS, ATTCHPGM

Copyright � 2012 by Steven H. Comstock 6 Overview

Batch

Copyright � 2012 by Steven H. Comstock 7 Batch

Section Preview

� Basic Program Interfaces - Batch

� Accessing the data in the PARM field on the JCL
EXEC statement

� Gaining access to external files

� Operator Console I/O

� Setting normal termination value

� Setting abnormal termination value

� Running jobs in batch

� Setting up files and running batch programs
(Machine Exercise)

Basic Program Interfaces

� An assembled or compiled and bound program (load module or
program object ["executable" for short]) accepts / produces the
following inputs and outputs

� Parm field from the EXEC statement

� Records to / from files

� Lines to / from console

� Termination code

� Normal termination: Return Code (also Condition Code)

� Abnormal termination: Completion Code (System or User)

Copyright � 2012 by Steven H. Comstock 8 Batch

Executable

Console

RC | UCC | SCCPARM='...'

DDnames

External Files

Data

SYSOUT
Files

Gaining Access To The PARM Field - Assembler

� On entry to your program, Register 1 points to a fullword in memory
that points to a halfword length field followed by the PARM data

� The length field contains the length of the data only

� After doing basic save area chaining, if R1 has not been modified:

L 1,0(1) PICK UP ADDRESS OF LENGTH FIELD

LH 2,0(1) PICK UP LENGTH OF PARM DATA

LA 3,2(1) POINT TO PARM DATA

� To move this variable length field to a location, say PARM_IN, use
the EX instruction, something like:

BCTR 2,0 DECREMENT LENGTH

EX 2,MOVEIT EXECUTE REMOTE INSTRUCTION

...

MOVEIT MVC PARM_IN(0),0(3) MOVE PARM DATA

� At execution time, the parm data is passed using this syntax:

//SNAME EXEC PGM=pgm,PARM='up to 100 characters'

Copyright � 2012 by Steven H. Comstock 9 Batch

up to 100 characters

R1

Gaining Access To The PARM Field - COBOL

Id Division.

Program-id. MORTGAGE.

. . .

Data Division.

. . .

Linkage Section.

01 In-Parms.

02 Length-of-parms Pic S9999 Binary.

02 Data-in-parms.

03 Date-choice Pic X.

03 Parm-Month Pic 99.

03 Parm-Day Pic 99.

03 Parm-Year Pic 99.

03 Parm-Rate Pic V99999.

Procedure Division using In-Parms.

. . .

If Length-of-parms = 0

Then perform default-settings

Else perform set-from-parm.

� At execution time, code:

//SNAME EXEC PGM=MORTGAGE,PARM='E011520yy825/'

� and the data from the PARM field on the EXEC statement is
passed into your program's “In-Parms” field automatically

Copyright � 2012 by Steven H. Comstock 10 Batch

Gaining Access To The PARM Field - PL/I

� In mainline program, code something like this:

INTPMTS: PROC (IN_PARMS) OPTIONS (MAIN);

...

DCL IN_PARMS CHAR(100) VARYING;

...

IF LENGTH(IN_PARMS) = 0

THEN CALL SET_DEFAULT_SETTINGS;

ELSE IF LENGTH(IN_PARMS) > 50

THEN CALL BAD_PARMS;

ELSE CALL SET_FROM_PARMS;

...

� At execution time, code something like:

//SNAME EXEC PGM=INTPMTS,PARM='/E011520yy825'

� and the data from the PARM field on the EXEC statement is
passed into your program's “IN_PARMS” field automatically

Copyright � 2012 by Steven H. Comstock 11 Batch

Gaining Access To The PARM Field - C

� In C, the situation is a little more complex

� C first parses any parm data, creating an array of words

� A word is defined to be blank-delimited; extra leading and
trailing blanks are deleted

� The C main function sees two arguments, one is the count of the
number of words, the second is an array of character strings, one
word per element, so your argument definition looks like this:

void main(int argc, char *argv[]);

� We can only approximate the same output as in the other
examples, something like this:

char * parm_ptr;
char char_work [100];
short i;
void main(int argc, char *argv[]);
{
if (argc >1)

{
strcpy(char_work, "Parm= ");
for (i=1;i<argc;i++)
{
parm_ptr = strcat(char_work, argv[i]);
parm_ptr = strcat(char_work, " ");
}
printf("%s",parm_ptr);

}

� Also, argv[0] will contain the program name

Copyright � 2012 by Steven H. Comstock 12 Batch

Gaining Access To The PARM Field - C, continued

� Note that printf output goes to a DD statement named SYSPRINT if
one is available; otherwise it uses a DD name of SYS0000n, which
will be dynamically allocated at run-time

� If a C program is compiled with the NOARGPARSE option, then you
will get the string as it is entered from: 1) the code on the previous
page; 2) scanf of the parm (argv[1]); 3) the LE CEE3PRM service (not
discussed in this course); and 4) this code:

_VSTRING ParmMsg;
. . .
strcpy(ParmMsg.string), "Parm = ");
parm_ptr = strcat(ParmMsg.string, argv[1]);
ParmMsg.length = strlen(ParmMsg.string);
CEEMOUT(&ParmMsg, &dest, &fc);

� If you include a #pragma runopts(noexecops) in your program, at run
time, the LE run-time options are not passed to LE but the whole
parm string is passed to your program…

#pragma runopts(noexecops)
#include <stdio.h>
#include <string.h>
char * parm_ptr;
.
.
.

Copyright � 2012 by Steven H. Comstock 13 Batch

Notes On PARM Data

� Non-LE-conforming Assembler programs take their PARM data
“straight”:

PARM='user-data'

� COBOL Programs expect any user PARM data followed, optionally,
by a slash and any LE run-time parms:

PARM='user-parms/LE-parms'

� PL/I, C, and LE-conforming Assembler programs expect any LE
run-time parms followed, optionally, by a slash and any user PARM
data:

PARM='LE-parms/user-parms'

� Generally, accessing the PARM from your program using the above
techniques returns the user-parms portion

Copyright � 2012 by Steven H. Comstock 14 Batch

Gaining Access To External Files

� Basic process the same in all languages

� Define / declare files, specifying a DDname

� Assembler: DCB or ACB macro, DDNAME= parameter

� COBOL: SELECT filename ASSIGN TO ddname

� PL/I: DCL filename FILE RECORD …

� filename is DDname unless OPEN with TITLE option

� C: declare a variable as type file pointer: FILE *file-handle, then
ddname or filename in fopen() for that file

� Define / declare data areas, end-of-file switches, etc.

� Assembler: DS and DC statements

� COBOL: Data Division definitions

� PL/I: DECLARE statements

� C: item and structure declares

� Issue I/O verbs, for example (not exhaustive):

� Assembler: OPEN, CLOSE, GET, PUT, PUTX

� COBOL: OPEN, CLOSE, READ, WRITE, REWRITE, DELETE

� PL/I: OPEN, CLOSE, READ, WRITE, REWRITE, DELETE

� C: fopen(), fread(), fwrite(), fclose()

Copyright � 2012 by Steven H. Comstock 15 Batch

Operator Console I/O

� This is discouraged, but is occasionally useful

� Assembler: WTO and WTOR macros

� COBOL: DISPLAY UPON CONSOLE and ACCEPT FROM
CONSOLE statements

� PL/I: DISPLAY and DISPLAY … REPLY statements

� C: __console() function

� Also, can send some output to job listing instead of console

� Assembler: WTO with ROUTCDE=11

� goes to system message dataset for job: the JCL listing

� COBOL: DISPLAY UPON SYSOUT

� goes to SYSOUT DDname

� PL/I: PUT {DATA|LIST|EDIT}

� goes to SYSPRINT DDname

� C: printf() goes to SYSPRINT, SYSTERM, or SYSERR if any of
these are allocated; otherwise the runtime dynamically allocates
SYS000n and uses that

� All languages: the LE CEEMOUT and CEEMSG routines

Copyright � 2012 by Steven H. Comstock 16 Batch

Setting Normal Termination Value

� To set the Return Code, or Condition Code, for testing in JCL:

� Assembler: Value in R15, then RETURN (14,12),,RC=(15)

� COBOL: Value in RETURN-CODE special register

� PL/I: CALL PLIRETC (value);

� Remember to declare PLIRETC as BUILTIN

� C: Specify the value in a 'return' statement: return(value);

� Note that for this to work you must specify the prototype for the
main function to return an integer instead of 'void':

int main (int argc, char *argv[]);

� In all languages you can just call the LE CEE3SRC service

Copyright � 2012 by Steven H. Comstock 17 Batch

Setting Abnormal Termination Value

� To set an Abnormal Termination value (System Completion Code or
User Completion Code)

� z/OS assigns System Completion Code (e.g.: S0C7)

� Assembler User Completion Code

� ABEND nnnn

� COBOL User Completion Code

� CALL 'ILBOABN0' USING identifier

� PL/I User Completion Code

� Requires installation modification of IBM-supplied module
IBMBEER

� C User Completion Code: issue a return() from a signal catcher

� All languages: call the LE services CEE3ABD or CEE3AB2

Copyright � 2012 by Steven H. Comstock 18 Batch

Accessing Termination Codes

� In batch, the Return Code value may be tested on subsequent steps
by the COND parameter on the EXEC statement

� The values are also displayed on the JCL listing

� Completion Codes are not testable, although they are displayed on
the JCL listing

� IF in JCL can test condition codes and completion codes

Some Examples

//STEPPER IF STEP5.RC > 8 THEN

...

// ENDIF

//STAMPER IF ABEND THEN

...

// ENDIF

//STOMPER IF ABENDCC=S013 THEN

...

// ENDIF

Copyright � 2012 by Steven H. Comstock 19 Batch

Coding JCL To Run Jobs In The Batch

� To prepare for the various interfaces for a program to be run in
batch, JCL might look like this:

//jobname JOB --job statement parameters

[//JOBLIB DD DSN=libraryname,DISP=SHR]

//stepname EXEC PGM=pgmname,PARM='parm data'

[//STEPLIB DD DSN=libraryname,DISP=SHR]

//ddname DD DSN=dsname,--dd statement parms

//ddname DD DSN=...

//ddname DD SYSOUT=.

//stepname EXEC PGM=pgmname,PARM='...'[,COND=]

[//STEPLIB DD DSN=libraryname,DISP=SHR]

//ddname DD DSN=dsname,--dd statement parms

//ddname DD DSN=...

//ddname DD SYSOUT=.

. . .

� Plus any other special DD statements:

� //SYSUDUMP for dumps in the event of ABEND or CEEDUMP for
an LE dump

� //SYSOUT for COBOL messages and LE messages

� //SYSPRINT for PL/I messages

� //PLIDUMP for PL/I debugging information

� //SYSTERM or //SYSPRINT or //SYSERR for C printf() output

Copyright � 2012 by Steven H. Comstock 20 Batch

Running Jobs In Batch

� JCL set up to run a job is placed into the batch job queues by way
of the SUBMIT command

� In ISPF/PDF edit or view of the JCL, on the command line type

SUBMIT

� In ISPF/PDF, outside of edit and option 6, on the command line
type

TSO SUBMIT 'libraryname(membername)'

or just

TSO SUBMIT name(membername)

if library name is of the form: <userid>.name.CNTL

� Outside of ISPF (from TSO 'READY') or at ISPF/PDF option 6, or
from a CLIST or REXX exec:

SUBMIT 'libraryname(membername)'

or

SUBMIT name(membername)

� SUBMIT may be abbreviated SUB in all cases

Copyright � 2012 by Steven H. Comstock 21 Batch

Computer Exercise: Running Batch Programs

This machine exercise is designed to provide setup for all the remaining
class exercises.

First, you need to run A780STRT, a supplied REXX exec that will prompt you
for the high level qualifier (HLQ) you want to use for your data set names;
the exec uses a default of your TSO id, and that is usually fine. Then the
exec creates data sets and copies members you will need.

From ISPF option 6, on the command line enter:

===> ex '__________.train.library(a780strt)' exec

A panel displays for you to specify the HLQ for your data sets, with your TSO
id already filled in. Press <Enter> and you get a panel telling you setup has
been successful. Press <Enter> again and you are back to the ISPF
command panel.

The allocated data sets:

<hlq>.TR.EXEC for REXX EXECs

<hlq>.TR.CNTL for all your JCL

<hlq>.TR.COBOL for all COBOL source code

<hlq>.TR.SOURCE for all other source code

<hlq>.TR.LOAD for load modules

<hlq>.TR.DBRMLIB if you might be running the DB2 labs

Copyright � 2012 by Steven H. Comstock 22 Batch

Computer Exercise: Running Batch Programs, p. 2.

A number of programs and EXECs have been provided by the setup, copied
into your various libraries. For this first lab, you will work with a program in
the language of your choice; choose one of:

ALCFTF - for Assembler programmers
COBFTF - if you are working in COBOL
PLIFTF - for PL/I programmers
CFTF - for C developers

Note that COBFTF is found in your TR.COBOL library, while the other
programs are found in your TR.SOURCE library.

Now, Assemble or compile and bind your source program into your LOAD
library. In all cases, the program logic is:

If the length of any parm data passed is between 1 and 25, a message is
issued containing an image of the parm data; other wise issue a default
error message

An input file is read and copied (input file uses a ddname of INDD
and output file uses a ddname of OUTDD)

On completion, the length of the parm field is used as the Return Code
value.

In the TR.CNTL library are members to Assemble or compile, bind, and run the
various programs, as follows:

A780A1 for ALCFTF
A780COB1 for COBFTF
A780P1 for PLIFTF
A780C1 for CFTF

Run your program(s) several times with various parms, including no PARM, a
parm value larger than 25 characters, and a parm value between 1 and 25
characters, to test the logic works as expected.

Copyright � 2012 by Steven H. Comstock 23 Batch

Computer Exercise: Running Batch Programs, p. 3.

The expected outputs are:

* Return code = length of parm

* Message displaying the parm value or an error message

* A listing of the input records, something like this:

On the ramparts flaming stood Aragon
The mighty warrior of wide renown
Burning with anxious charcoal eyes
Drooping down from purple skies
Arms extended, holding arms:
Broken lances, stolen glances,
Country dances, quick he prances away.

Never far from victory, but never final
Reciting poetry always banal
With wretched scansion, hackneyed rhymes
Stolen from poems written in ¾ time,
By better poets with truer souls and
Fairer hearts; his little band
Of literary agents seeking ten percent
Or more of earnings from the meager rent
He makes through the slaughter of several
Modern languages.

Still onward presses Aragon, to new
Lands and battles, with ever few
Fair memories to save for sweet future
Times of rest and respite from butcher
-ing of honest words and feelings
Known by nobler souls and underlings
But not by him, for he feels not.

Never dreaming of defeat in battle
Or in dance contest or in spelling bee
He staggers to the future, from past
He can't remember and will not last.
Not noticing the lines that do not scan
Neither those that do not rhyme
Nor those that make no sense, content
In blissful ignorance his time is spent
Avoiding life and objectivity
In preference to his own reality
Which is real for him alone, but
For him that is enough.

-Anon.

Copyright � 2012 by Steven H. Comstock 24 Batch

