
z/OS JCL and Utilities

z/OS JCL and Utilities - Course Objectives

On successful completion of this course, the student, with the aid of the
appropriate reference materials, should be able to:

1. Understand the basic flow of work in z/OS, including JES Readers,
Writers, Initiators, the role of the Interpreter, and the purpose of Allocation

2. Describe the storage layout of z/OS and use the REGION and MEMLIMIT
parameters as appropriate and necessary

3. Code JCL statements as necessary to accomplish work in the z/OS
environment, including JOB, EXEC, DD, OUTPUT, IF/THEN, ELSE,
ENDIF, INCLUDE, SET, JCLLIB, PROC and PEND statements

4. Create and delete data sets using IEFBR14

5. Copy files for backup, restore, and testing purposes using the IBM utility
program IEBGENER

6. Use some of the basic services of IDCAMS, the VSAM utility

7. Use a Sort/Merge program product to sort a sequential data set

8. Code the OUTPUT JCL statement to produce multiple groups of SYSOUT
files

9. Use ISPF/PDF 3.8 and / or SDSF, OMC-FLASH, IOF, or (E)JES facilities
for tracking jobs and examining job output (as available to the student)

10. Code cataloged procedures, including the use of symbolic parameters
and defaults, nested procedures, and private proclibs

11. Describe the implications of Storage Management Subsystem (SMS)
and Partitioned Data Sets, Extended (PDSE's)

12. Know where to find additional information as needed.

1

B610 / 3 Days These Materials Copyright ã 2024 by Steven H. Comstock V5.3

z/OS JCL and Utilities - Topical Outline

Day One

The Application Program Envrionment
The Road to z/OS
Z/OS Workflow
JES - The Job Entry Subsystem
JCL statement syntax
JOB, EXEC Statements

Computer Exercise: OSWTO... 32
JCL Clues - 1

Running Jobs
The Work Load Manager (WML)
The SCHENV parameter
Submitting Jobs
SUBMIT Edit - Browse - View Primary Command
Monitoring Jobs and Examining Job Output Using ISPF Option 3.8
Computer Exercise: Running a Job ... 47

Introduction to Data Management
Data Management Terms
SYSIN-type data and SYSOUT-type data
Reserved DDnames
Computer Exercise: SYSIN and SYSOUT Files 70

JCL Clues - 2

Tape and Disk Data Sets
Tape and Disk Data Sets
Tape layout
DASD Concepts
Data Set Naming Rules
Units, Volumes, Catalogs

Tape and DASD DD Statements
Building Tape and DASD DD statements
Sample DD Statements
Data Flow Diagrams
Computer Exercise: JOB Using Tape And Disk Data Sets 116

JCL Clues - 3

2

B610 / 3 Days These Materials Copyright ã 2024 by Steven H. Comstock V5.3

z/OS JCL and Utilities - Topical Outline, 2

Day Two

SMS - System Managed Storage
STORCLAS, DATACLAS, MGMTCLAS
ISMF
Output DD Statements With SMS

Looking at Job output
Other DD techniques and parameters

Temporary data sets
Concatenation
Computer Exercise: NEWF2F ...152

Utilities and Job Output Viewing
IEFBR14, IEBGENER, IDCAMS
SDSF, OMC-FLASH, IOF, (E)JES
Computer Exercise: Utilities..199

Sort / Merge
JCL Requirements
Control Statements
Computer Exercise: SORT .. 215

OUTPUT Statements
Computer Exercise: OUTPUT Statements ...227

Day Three

Memory Management and Condition Code Testing
REGION parameter
MEMLIMIT parameter
Program termination

IF / THEN / ELSE / ENDIF statements
JOBRC parameter

Computer Exercise: Conditional Processing .. 243

3

B610 / 3 Days These Materials Copyright ã 2024 by Steven H. Comstock V5.3

z/OS JCL and Utilities - Topical Outline, 3

Day Three, continued

JCL procedures
Cataloged procedures
JCLLIB statement
Computer Exercise: A Cataloged Procedure 251

JCL procedures: inserts and overrides
Procedures and inserts
Procedures and overrides
Computer Exercise: Inserts and Overrides .. 263

Symbolic Parameters
Symbolic parameters
SYSUID
Computer Exercise: A Procedure With Symbolic Parameters 276

JCL SETs, INCLUDEs and Nested Procedures
The SET Statement; The INCLUDE statement
Nested Procedures
Computer Exercise: Using Nested Procedures and INCLUDEs 290

Additional Data Set Handling Techniques
Generation Data Groups
PDSE - Partitioned Data Set, Extended

TSO Commands
LISTC, DELETE

Sources of Information

4

B610 / 3 Days These Materials Copyright ã 2024 by Steven H. Comstock V5.3

Introduction

Copyright ã 2024 by Steven H. Comstock 5 Introduction

Section Preview

p Introduction

¨ Operating System

¨ The Application Program Environment

¨ MVS - Multiple Virtual Storages

¨ The Road to z/OS

¨ z/OS Work Flow

¨ Job Entry Subsystem

¨ JCL Statement Format

¨ JOB Statement Format

¨ EXEC Statement Format

¨ OSWTO (Machine Exercise)

¨ JCL Clues - 1

Operating System

Introduction

p A Collection of programs that:

¨ Manage a computer system's resources

• Maximize device utilization
• Transfer data between memory and devices at program request
• Handle error detection and recovery
• Attain maximum possible performance under current workload

¨ Schedule work to be done

• Determine jobs to be run, based on job control statements
• Assign (allocate) resources to programs as necessary
• Handle unscheduled work such as time sharing systems

and transaction processing work
• Communicate with operator via

Commands (operator to system)
Messages (system to operator)

¨ Maintain integrity of system and data

• Provide security
• Prevent simultaneous update
• Prevent deadlock

Copyright ã 2024 by Steven H. Comstock 6 Introduction

The Application Program Environment

Application Program Environment

p An operating system provides an environment, a context, for
application programs to run

¨ Control blocks keep track of all programs in memory, their
location, attributes, and status

¨ System services allow application programs to do I/O, manage
memory dynamically, handle application errors, and much more

p The most meaningful perspective here is how memory is organized,
and we explore this in the following pages

¨ To show how memory is organized and, briefly, why it is
organized that way

¨ We do this by looking at a short history of MVS, MVS/XA,
OS/390, then z/OS

7 Roughly corresponding to addressing limits of 24-bits (MVS),
31-bits (MVS/XA and OS/390), and 64-bits (z/OS): the size of
memory the hardware and software support

Copyright ã 2024 by Steven H. Comstock 7 Application Program Environment

MVS - Multiple Virtual Storages

MVS

p An operating system that runs on S/370 and later IBM mainframes

¨ Virtual Storage - the functional illusion of computer internal
memory (storage), created using real internal memory, disk as a
backing store, and hardware features of the CPU to map virtual
addresses to real addresses

7 Only the portions of virtual memory holding data and instructions
currently being used need to be in real memory at any point in
time

¨ Address Space - a virtual storage that appears to be as large as
the hardware addressing scheme allows (24-bit addresses, which
allow up to 16MB of virtual storage per address space)

7 Contains operating system code and user code

7 Contains data currently being processed

¨ Each user has their own, distinct Address Space

7 System Address Spaces

7 Batch Jobs

7 Time Sharing Users

7 Maximum of 32,767 Address Spaces total

Copyright ã 2024 by Steven H. Comstock 8 MVS

The Road to z/OS

Road to z/OS

p Because each user has their own address space, each address
space needs to have a copy of the operating system

¨ Since this is the same for each user, the addressing scheme is
set up to have only one, shared, copy of the nucleus area and
the system area

¨ The unique parts of an MVS system look, conceptually, like this:

p Again, addresses are 24-bits so each address space is 16MB in size

Copyright ã 2024 by Steven H. Comstock 9 Road to z/OS

• • •

System area -
shared, pageable

Nucleus - shared,
non-pageable

Private
user area
(pageable)

Private
user area
(pageable)

Private
user area
(pageable)

Private
user area
(pageable)

The Road to z/OS, 2

p In the 1980's, IBM bit the bullet and extended the address space
from 24 bits to 31 bits

¨ 31 bits instead of 32 bits for a variety of reasons, which provides
for a 2 GB address space (2,147,483,648 bytes)

¨ This was called extended architecture, abbreviated XA, so the
operating system was called MVS/XA

¨ This provides for 128 times the previous amount of virtual
storage for programs to use

¨ In addition to providing a larger address space, IBM re-arranged
the layout

7 Sections of code that relied on 24-bit addresses had to remain
under the 16 MB limit (which has come to be called The Line)

7 So IBM moved as much of their code as possible above The
Line (there will always have to be some code below The Line, to
support older code)

¨ So, the layout of an address space in MVS/XA looks like the
diagram on the following page ...

Copyright ã 2024 by Steven H. Comstock 10 Road to z/OS

The Road to z/OS, 3

p MVS/XA address space:

p The goal is to put very little code and data below the line and to
have the vast majority of programs and data reside above the line

Copyright ã 2024 by Steven H. Comstock 11 Road to z/OS

System Area - 20KB

Private User Area

System Area above the line

System Area below the line

Extended Private User Area

The Line (16 MB)

This diagram is not in proportion

The area above The Line is 127
times the area below The Line

The 20KB low System Area is
1/50th of 1 MB, or 1/800th of the
area below The Line

The Road to z/OS, 4

p Other variations of MVS came along, to support enhanced hardware
instructions and features, but the essence of address spaces did not
change

p The next step in the evolution was OS/390 (Operating System/390)
which is really a packaging of components

p OS/390 contains

¨ MVS code plus a number of program products as a single
package

¨ Intent was to update every six months, keeping all the products
in synch, thus simplifying the process of installing and
upgrading systems and products (1st release was 3/96)

¨ Products included with OS/390 (among others):

7 SMP/E (for maintenance uses)

7 TSO/E

7 ISPF

7 High Level Assembler

7 BookManager

7 DFSMSdfp

7 Language Environment (LE)

7 TCP/IP

7 DCE (Distributed Computing Environment support)

7 OpenEdition / POSIX support (UNIX under MVS!)

¨ In addition, other optional products are available to be shipped
in an OS/390 order, for an extra charge

Copyright ã 2024 by Steven H. Comstock 12 Road to z/OS

The Road to z/OS, 5

p In 2001, IBM made available new hardware, the first of the zSeries
machines, that supported 64-bit addresses

¨ So now address spaces can be as large as 64-bit addresses
allow

p A new operating system, z/OS, was announced to support the new
hardware

p But z/OS is based on OS/390 - there is a solid continuity here

¨ Most old code can still run under z/OS, even code compiled and
linked under earlier operating systems over 35 years earlier

¨ To use new features, of course, you need to rewrite, recompile,
and rebind

¨ There are still address spaces, just larger and organized slightly
differently

¨ There is still an MVS component, a TSO component, and so on

p The last release of OS/390 was V2R10, available September 2000, the
first release of z/OS was available March 2001

¨ The announced intent is to slow the release schedule to once a
year after V1R6 is available

Copyright ã 2024 by Steven H. Comstock 13 Road to z/OS

The Road to z/OS, 6

p Some of the issues around establishing a 64-bit address space are
resolved this way

¨ The size of the low System Area is increased to 24KB

¨ The previous limit of 2 GB is now called The Bar

7 So programs or data can reside

â Below The Line

â Above The Line but below The Bar

â Above The Bar (data only, currently, no programs)

p A 64-bit address space allows for a maximum address of
18,446,744,073,709,551,615

¨ That is, a 64-bit address space is 8,589,934,592 times the size of
a 31-bit, 2 GB address space

Copyright ã 2024 by Steven H. Comstock 14 Road to z/OS

The Road to z/OS, 7

p z/OS address space:

p Each job runs in its own address space, so now we move on to
explore the management of jobs in z/OS ...

Copyright ã 2024 by Steven H. Comstock 15 Road to z/OS

System Area - 24KB

Private User Area

System Area above The Line

System Area below The Line

Extended Private User Area
(data only)

The Line (16 MB)

This diagram is not in proportion

The area above The Bar is
8,589,934,591 times the area
below The Bar

The area below The Bar but
above The Line is 127 times the
area below The Line

The Bar (2 GB)

Extended Private User Area
 (data and / or code)

Job Management

Job Management

Job

7 A unit of work to be run in the batch; one or more programs to
be run in sequence

Job Queue

7 An ordered collection of jobs

Job Class

7 A one character code (A-Z, 0-9; 36 possibilities) assigned to
each job

Job Priority

7 A numeric value, 1-15 (1-13 for JES3 environment), that
describes the relative importance of jobs within their job class
(the higher the job priority number, the more important the job)

Copyright ã 2024 by Steven H. Comstock 16 Job Management

Job Management, 2

Job Control Language (JCL)

7 A specification language used to describe jobs (work to be done)
in terms of what resources are required, in what order, and under
what conditions various work should get done

7 JCL is written as a series of statements

Job Stream

7 A collection of JCL and card [-image] input data read into the
system for placement on the job queue

SPOOL

7 Simultaneous Peripheral Operations On-Line

â Using DASD work space to simulate the presence of multiple
card readers, card punches, and printers

â Thus allowing many jobs to be producing reports
concurrently, even if you only have one printer

7 The SPOOL area of DASD is also used to hold jobs in the queue
waiting for work ...

Copyright ã 2024 by Steven H. Comstock 17 Job Management

z/OS Work Flow

z/OS Work Flow

Copyright ã 2024 by Steven H. Comstock 18 z/OS Work Flow

Jobstreams

Printer & Punch
 Output

 (SYSOUT)

 JES

 Reader

 JES

 Converter

 JES

 Initiator

 SWA

 System

 Initiator

 Your

Program
 JES

 Writer

 Interpreter

 Allocation

SPOOL

Card Input
 (SYSIN)

SPOOL

SPOOL

SYS1.PROCLIB

Job Entry Subsystem (JES)

Reader

¨ Reads job stream, puts on Job Queue by priority within class

Converter

¨ Converts free form JCL into control blocks on Job Queue

Initiator

¨ Selects which job to run next, based on class and priority

Allocation

¨ Creates the required environment for executing the job

While the program runs, the SPOOL routines

¨ Replace unit record I/O requests with I/O to SPOOL

Deallocation

¨ Frees resources on completion of step and job

Writer

¨ Transcribes SPOOLed output to printer or punch

Copyright ã 2024 by Steven H. Comstock 19 z/OS Work Flow

Job Purge Routine

p When the last line has been printed and the last card punched, the
purge routine is invoked

¨ Removes job JCL, and all SYSIN-type and SYSOUT-type records
from SPOOL

¨ Frees that SPOOL space to be used by subsequent jobs

p Note that there are two versions of JES: JES2 and JES3

¨ The differences need not concern us here

¨ Also note: JES3 support will be going away

7 Phoenix Software has arranged for a license of the source
code and they are creating a product to continue and enhance
JES3 support under their own product line

Copyright ã 2024 by Steven H. Comstock 20 z/OS Work Flow

How JCL Describes Resources
JCL Syntax

//jobname JOB (accountnginfo),prgrmrname,TIME=(min,sec),CLASS=x
//STEP1 EXEC PGM=ISDED01,PARM='YNOFOUT/'
//STEPLIB DD DSN=DFIR.PROD.LOADLIB,DISP=SHR
//TRANSIN DD *
3560199227768
3568834990022 sysin-type data (instream data)
4492445502367
•
•
•
//TRANSOUT DD UNIT=SYSDA,DISP=(,PASS),SPACE=(TRK,(25,10))
//MASTREF DD DSN=DFIR.CUST.MASTRFLE,DISP=SHR
//STEP2 EXEC PGM=ISDUPDT,PARM='TEST/'
//GOODTRAN DD DSN=*.STEP1.TRANSOUT,DISP=(OLD,DELETE)
//MAST DD DSN=DFIR.CUST.MASTRFLE,DISP=OLD
//LOGTPE DD DSN=DFIR.APLILOG(+1),UNIT=TAPE,DISP=(,CATLG)
//LOGRPT DD SYSOUT=M
//UPDRPT DD SYSOUT=A,COPIES=2
//SYSUDUMP DD SYSOUT=D

C
o

p
y rig

h
t ©

2

0
2

4
 b

y S
te

 ve
n

 H
. C

o
m

s
to

c
k

2
1

J
C

L
 S

yn
ta

x

The Allocation Process

Allocation

Job Allocation

¨ Step Allocation

7 Units, volumes, data sets, DASD space; then program fetch
loads in the program

STEP EXECUTION

¨ Step Deallocation

7 Data set disposition processing

Job Deallocation

¨ Final data set dispositions

¨ Indicate SYSOUT-type data available for processing

Copyright ã 2024 by Steven H. Comstock 22 Allocation

JCL Operations

JCL Introduction

p JCL describes the work to be done in a job through statements that
are categorized into operations

p There are four major JCL operations, each described in separate
JCL statements:

JOB statement

¨ Indicate the start of the JCL for a job; assign job class (which
initiators can service this job), and some other basic descriptive
information

EXEC statement

¨ Indicate step boundaries; each step runs one program

DD statement

¨ Data Definition; one for each data set resource the program in a
step will need

OUTPUT statement

¨ Describe SYSOUT-type processing characteristics for some data
sets

p Every job has one JOB statement followed by an EXEC statement for
each program to run

p Each EXEC statement is followed by the DD statements that
describe the data sets the program run in that step will use

p OUTPUT statements and their placement are described later

Copyright ã 2024 by Steven H. Comstock 23 JCL Introduction

JCL Statement Format
JCL Syntax

Columns 1-71:

//NAME OPERATION OPERAND,OPERAND,OPERAND COMMENTS

One or more spaces (blanks)

p NAME: 1-8 characters from A-Z, 0-9, $, #, @; first not numeric

Operation Name field

 JOB jobname

 EXEC stepname

 DD ddname

 OUTPUT outputname

p OPERANDS: Positional,Keyword

C
o

p
y rig

h
t ©

2

0
2

4
 b

y S
te

 ve
n

 H
. C

o
m

s
to

c
k

2
4

J
C

L
 S

yn
ta

x

JCL Statement Format, 2

p Special formats:

//* — Comment statement

// — Null statement

/* — SYSIN data delimiter

p Note that there are other operations, some of which we will be discussing later in the class

C
o

p
y rig

h
t ©

2

0
2

4
 b

y S
te

 ve
n

 H
. C

o
m

s
to

c
k

2
5

J
C

L
 S

yn
ta

x

JCL Coding Rules

JCL Syntax

p JCL is generally coded in uppercase

¨ Exception: when coding parameters to access files in the z/OS
UNIX File System (zFS), which is not covered in this course

p Code up to column 72, then continue a statement, if necessary, on
the next line as discussed on the next page...

Copyright ã 2024 by Steven H. Comstock 26 JCL Syntax

JCL Continuation

//NAME OPERATION OPERAND1,OPERAND2,

// OPERAND3,OPERAND4,OPERAND5,

// OPERAND6, comments may go one or more spaces

// OPERAND7, after a comma

// OPERAND8

p Continued statement must begin somewhere in columns 4-16,
inclusive

Copyright ã 2024 by Steven H. Comstock 27 JCL Syntax

JOB Statement Format

//jobname JOB (accounting info),progammer-name,

// CLASS=x,MSGCLASS=y,

// NOTIFY=userid,TIME=(min,sec),

// TYPRUN={HOLD|SCAN}

¨ accounting info - up to 143 characters, installation choice

¨ programmer name - up to 20 characters, installation choice

¨ CLASS is job class, implying which initiators may run this job

7 Installation runs some number of initiator address spaces for
running batch jobs; each initiator is assigned to handle particular
sets of job classes

¨ MSGCLASS is SYSOUT class, specifying where printed /
punched output from job should go

¨ NOTIFY may specify a “userid” or “node.userid” (“node” option
not supported in JES3)

¨ TIME special values: 1440 or NOLIMIT (both mean unlimited
time), MAXIMUM (allows job to run up to 357,912 minutes - about
8 months)

¨ Omit TYPRUN normally; SCAN checks for JCL errors, HOLD
keeps initiator from selecting job until explicitly released

Copyright ã 2024 by Steven H. Comstock 28 JCL Syntax

JOB Statement, continued

Examples

//MYWAY JOB (432,'RDD-343',NOXIOUS),JONES,

// CLASS=A,MSGCLASS=H,NOTIFY=SJONES

.

.

.

//YOURWAY JOB (TR409,63),'O''NEIL',

// NOTIFY=DEPT53.SSMITH,

// TIME=2
.
.
.

p Note: in JES3 systems, jobclass is specified on a JES3 MAIN
statement, and job classes under JES3 can be up to 8 characters
long

Example:

//ANYWAY JOB (TRNG00P0),WIMP,

// MSGCLASS=X,NOTIFY=WIMP

//*MAIN CLASS=TSTHTEST

Copyright ã 2024 by Steven H. Comstock 29 JCL Syntax

EXEC Statement Format

//stepname EXEC { PGM=programname

| PROC=procedurename

| procedurename}[,]

// PARM=----------------,

// TIME=(min,sec)

p You must specify one of PGM=, PROC=, or just a name (which is
then assumed to be a “procedurename”)

"programname"

¨ System will look for this name in the directory of the library of
executable programs called SYS1.LINKLIB (or its extensions)

"procedurename"

¨ System will look for this name in the directory of the library of
pre-coded JCL called SYS1.PROCLIB (or its extensions)

p PARM is any string up to 100 characters long to be passed directly
to the program being run

p TIME has the same possibilities as for the JOB statement, plus you
may code TIME=0 which means use any time remaining from the
previous step

Copyright ã 2024 by Steven H. Comstock 30 JCL Syntax

EXEC Statement, continued

Examples

//STEP1 EXEC PGM=ISDR01R

//STEP2 EXEC PGM=XYZARG,

// PARM='DEPARTMENT 56, SAN JOSE'

//STEPX EXEC PGM=SORT,TIME=(12,30)

//LOUSY EXEC PGM=BIGRPT,PARM='FINAL RE

// PORT ON STUDIES DONE IN JANUARY'

¨ Note continuation of quoted string

7 string coded up to (and including) column 71

7 continuation must have '//' in first two columns and continued text
begins exactly in column 16

//CREDIT EXEC PROC=CPR43

//DISPUTE EXEC DSP567

Copyright ã 2024 by Steven H. Comstock 31 JCL Syntax

Computer Exercise: OSWTO
JCL Exercise

Setup for all class labs:

Using ISPF option 6, enter the following command:

 ===> ex ' .train.library(b610strt)' exec

(NOTE: you must code the fully qualified dataset name
in quotes)

and press Enter.

This will cause the setup process to run. You will be prompted for a high
level qualifier for your data sets. Unless the instructor tells you otherwise,
use your TSO userid (the process is set up to use this as a default anyway).
Press Enter.

The setup process will create a library for you to hold your JCL for the labs.
The library name is <hlq>.TR.CNTL, where "<hlq>" is replaced by the high
level qualifier you entered in response to the setup's prompt. This process
also places a couple of members in your library you will need for various
labs.

Copyright ã 2024 by Steven H. Comstock 32 JCL Exercise

Computer Exercise: OSWTO, continued

The lab ...

In your <hlq>.TR.CNTL data set, create a member called JCLEX01 to hold
the Job Control statements necessary to run one job with two steps.

Reminder: to create a new member just use ISPF option 2 (edit);
editing <userid>.TR.CNTL(JCLEX01) will create the member
in your library, showing you an empty screen, ready to type.

First copy in member JOB at the front.

[From the command line enter: ===> copy job]

Next, since the program we are going to run is not stored in the standard
system program library, we need to tell allocation where to find the program.
After your JOB statement, and before any other JCL, code a statement like
this:

//JOBLIB DD DISP=SHR,DSN=___________.TRAIN.LOADLIB

We'll discuss what this means later in the course.

Each of the two jobsteps should run the same program: OSWTO. So code
two EXEC statements, each specifying PGM=OSWTO.

This program accepts from 1 to 25 characters (inclusive) from
the PARM field on the EXEC statement and copies this data
to the system message dataset (your JCL listing).

If you don't supply a value for the PARM field, the
program will "blow up". On the other hand, if you
supply more than 25 characters in the PARM field,
the program will also "blow up".

So, on each step pass to the program, through the PARM field, your name
(or userid) and the step name.

Do not run the job just yet - we have some more to talk about first.
(BUT... take a look at the next couple of pages for some ideas.)

Copyright ã 2024 by Steven H. Comstock 33 JCL Exercise

This page intentionally left almost blank.

Copyright ã 2024 by Steven H. Comstock 34 JCL Exercise

Clues for Writing JCL

JCL Clues

p Coding JCL is often a matter of “reading between the lines” of the
information you are given, to translate this into JCL statements -
looking for clues, as it were

p In the course of several exercises, we will sumarize pointers that are
useful in most situations

JOB Statements

¨ Installation standards, and any JOB Statement generating edit
macros normally provide you with all the information you need

//JOBname JOB (acctng),pgmr_name,CLASS=x,MSGCLASS=y[,
// REGION=nn{K|M}[,TYPRUN={SCAN|HOLD}][,TIME=(min,sec)]]

7 JOBname - see installation standards reference

7 Accounting info - installation specific

7 Programmer name - up to 20 characters; installation specific or
programmer choice

7 CLASS= - installation specific job class

7 MSGCLASS= - installation specific SYSOUT class for JCL
listings

7 TYPRUN=SCAN - does a basic JCL syntax check, does not
actually run the job

7 TYPRUN=HOLD - holds job until explicitly released; used to run
job in off shift, or to hold until another job has run

7 REGION= - job dependent, if required; virtual storage necessary
to run the job

7 TIME= - minutes and seconds to allow the JOB to run before
cancelling; use for testing, not production

Copyright ã 2024 by Steven H. Comstock 35 JCL Clues

Clues for Writing JCL, 2

EXEC Statements for Running Programs

¨ Need an EXEC statement for each program to run in a job; the
order of the EXEC statements is the order the programs will be
run in

//stepname EXEC PGM=program_name[,PARM=' '][,TIME=][,
// REGION=nn{K|M}]]

7 Stepname - installation standard or programmer choice

7 PGM= - name of program to run

7 PARM= - up to 100 characters of parameter information; program
specific; only code if you are told the program expects or needs
certain PARM or parameter data, and you are also told what data
to code

7 TIME= - minutes / seconds this step is allowed to run; only code
for testing, never production

7 REGION= - program dependent, if required; virtual storage
necessary to run the step

p ALSO: you need to know where the programs are found

¨ If all programs are found in “the system libraries” or “the link
list”, then you do not need JOBLIB or STEPLIB statements

¨ If a program is found in a particular library, you need to code

//STEPLIB DD DSN=library_name,DISP=SHR

or

//JOBLIB DD DSN=library_name,DISP=SHR

¨ Place a STEPLIB after the EXEC statement it relates to; place a
JOBLIB after the JOB statement

Copyright ã 2024 by Steven H. Comstock 36 JCL Clues

