
Using DFSORT and ICETOOL

Using DFSORT and ICETOOL - Course Objectives

On successful completion of this class, the student, with the aid of the appropriate
reference materials, should be able to:

1. Write JCL and DFSORT control statements to sort, copy, and merge
records in the following kinds of files as input, and to produce these
kinds of files as output:

* Sequential data sets
* VSAM data sets
* Mem bers of PDS or PDSE
* Files in the z/OS File System (zFS - UNIX file support)

2. Create symbolic name files to use in DFSORT and ICETOOL control
statements

3. Write JCL and DFSORT and ICETOOL control statements that enable you to
perform these tasks with no need to write code in a programming language:

* Work with subsets of files (filter / extract out records)

* Build new records, reformat existing records, even recognizing and
handling different record layouts in the same file; including:

- adding, removing, and reordering fields
- converting data type of fields, and editing content
- doing arithmetic calculations, inserting sequence numbers
- replace values using lookup pairs in specific locations
- replace values in any location

* Extract fixed length values from variable length fields (parse)

* Output multiple files in a single pass, including XML, HTML, and
reports with up to three levels of control breaks

* Working with dates and times in a wide variety of formats, including
SMF, TOD, and ETOD, and working with dates with two digit years

* Convert betweeen fixed length record files and variable length record files

* Join records from two files and process the resulting record set

* Use locales for sorting and copying, and work with ASCII files

* Combine fields from two or more files into records in a single file.

1

B625 / 4 Days These Materials Copyright ã 2024 by Steven H. Comstock V3.2

Using DFSORT and ICETOOL - Topical Outline

Day One

Introduction to DFSORT
Background
Computer Exercise: Setting Up for Labs .. 10

The DFSORT Program
DFSORT Capabilities
JCL and Control Statements for DFSORT
Introduction to INCLUDE / OMIT Statements
Introduction to the INREC Statement
Introduction to the SORT Statement
Introduction to the OUTREC Statement
Using SORT to do a copy
Computer Exercise: Running Sorts .. 29

Data Types and Symbolic Names
Data Types

CH, AQ, ZD, ZDF, ZDC, PD, PDF, PDC, CSF, UFF, SFF, CSL,
CST, CLO, CTO, FI, FL, BI, AC, ASL, AST

Symbolic Names
Literals
Using Symbolic Names
Converting values
Additional symbolic name facilities
Computer Exercise: Using Names .. 56

A Deeper Look at INCLUDE, OMIT, and SORT statements
INCLUDE / OMIT: Additional COND tests
The Complete SORT Statement
Computer Exercise: Using Additional Tests and SORT Operands 69

The INREC and OUTREC Statements, round 2
The Roles of INREC and OUTREC
The PARSE Operand
PARSE and symbolic names
Computer Exercise: PARSE ... 88

2

B625 / 4 Days These Materials Copyright ã 2024 by Steven H. Comstock V3.2

Using DFSORT and ICETOOL - Topical Outline, p.2.

The INREC and OUTREC Statements, round 3
The BUILD operand
BUILD Values
Computer Exercise: Using BUILD .. 129

The INREC and OUTREC Statements, round 4
The OVERLAY operand
The FINDREP operand
Computer Exercise: OVERLAY and FINDREP 142

Day Two

The INREC and OUTREC Statements, round 5
The IFTHEN operand
Computer Exercise: IFTHEN .. 167

Working with Dates
Dates
Dates with four digit years
Dates with two digit years
Enhanced date processing
Date Field arithmetic
Computer Exercise: Sort and Format Dates .. 217

Working with Times
Times

OUTFIL - Multiple output files
Some Perspective
The OUTFIL statement
Computer Exercise: Using OUTFIL .. 242

OUTFIL, round 2 - Reports
Report terminology
Report related operands of OUTFIL

Headers, Trailers, Control Breaks
Computer Exercise: Generating Reports ... 290

3

B625 / 4 Days These Materials Copyright ã 2024 by Steven H. Comstock V3.2

Using DFSORT and ICETOOL - Topical Outline, p.3.

Day Three

OUTFIL, round 3 - Markup
Markup Languages
Introduction to XML
DFSORT and XML
HTML - An Introduction
DFSORT and HTML
Computer Exercise: Generating Markup .. 326

Working with zFS Files
z/OS UNIX
Introduction to the z/OS File System (zFS)
zFS JCL Parameters
JCL and zFS Files: DFSORT Usage
Copying data to the zFS
Computer Exercise: Using zFS Files with DFSORT 345

Alternative Orderings
Collation sequence
ALTSEQ - Specifying alternative collating sequences
Locales - Ordering with an awareness of languages and formatting conventions
Sorting ASCII files
Computer Exercise: Sort an ASCII File .. 360

Additional DFSORT Control Statements
DFSORT Statements
Exits
The SUM Statement
The RECORD Statement
Merge Operations
The MERGE Statement
The OPTION Statement
JCL Statements Revisited
Computer Exercise: Using Additional DFSORT facilities 382

4

B625 / 4 Days These Materials Copyright ã 2024 by Steven H. Comstock V3.2

Using DFSORT and ICETOOL - Topical Outline, p.4.

Joining Files for a SORT or COPY operation
JOIN concepts
The JOINKEYS, JOIN, and REFORMAT statements
JOINKEYS Applications Notes
Computer Exercise: A JOINKEYS Application 404

Day Four

Introduction to ICETOOL
ICETOOL Overview
ICETOOL COPY operator
ICETOOL COUNT operator
Numeric editing in ICETOOL
ICETOOL DEFAULTS operator
ICETOOL MERGE operator
ICETOOL MODE operator
ICETOOL RANGE operator
ICETOOL SORT operator
ICETOOL STATS operator
ICETOOL UNIQUE operator
ICETOOL VERIFY operator
Computer Exercise: Introduction to ICETOOL 438

The ICETOOL DISPLAY operator
The DISPLAY Operator
DISPLAY examples
Computer Exercise: DISPLAYing Data .. 456

The ICETOOL OCCUR operator
The OCCUR Operator
OCCUR examples
Comparing ICETOOL Operators
Computer Exercise: Analyzing Data Patterns .. 470

5

B625 / 4 Days These Materials Copyright ã 2024 by Steven H. Comstock V3.2

Using DFSORT and ICETOOL - Topical Outline, p.5.

The ICETOOL RESIZE, DATASORT, SUBSET, and SELECT operators
The RESIZE operator
The DATASORT operator
The SUBSET operator
The SELECT operator
Computer Exercise: Using SELECT ... 491

The ICETOOL SPLICE operator
The SPLICE operator
Computer Exercise: SPLICE-ing Files ... 512

Loose Ends
But Wait! There's More!
The ICEGENER utility
VSAM support
Work data sets
Sorting Techniques
Using JCL Symbolic Parameters and SET symbols in DFSORT and

ICETOOL control statements
Tape files
Performance
Miscellaneous Notes

Note: this course is a thorough introduction to the facilities of DFSORT and
ICETOOL, omitting discussions of exits and the Extended Function Support.

While we cover all the control statements and operands in varying degree, with lots
of examples, you should consider this a starting point.

The next stop on your journey would be to examine the publications on the
DFSORT website, especially the "DFSORT Application Programming Guide", which
is the definitive source for this material, and "Smart DFSORT Tricks", which
provides additional examples of applications for DFSORT and ICETOOL based on
requests from customers.

You can find these publications, and more, on the DFSORT website beginning at:

https://www.ibm.com/support/pages/dfsort then follow the links to details.
for the Smart Tricks: https://www.ibm.com/support/pages/node/665475

6

B625 / 4 Days These Materials Copyright ã 2024 by Steven H. Comstock V3.2

Introduction toDFSORT

Copyright ã 2024 by Steven H. Comstock 7 Introduction to DFSORT

Section Preview

p Introduction to DFSORT

¨ Background

¨ Setting up for labs (Machine Exercise)

SORT - Background

p When OS/360 first came out (this was the ancestor of today's z/OS),
it included a free sort/merge utility as part of the operating system

¨ But it wasn't very good:

7 Competitors came out and were charging for their sort products
and were succeeding, even against the free sort included with
OS/360!

p At some point, IBM either got embarrassed or they saw a potential
revenue stream and they started paying attention to their sort

p This competition was good, since all the major players competed
against each other, each improving performance and functionality

¨ Often taking turns leapfrogging each other as the "best"
available sort product

¨ Today, the major players in the Sort market are IBM's DFSORT
and SyncSort from Syncsort, Inc.

7 At least one other sort package is in the fray, but these two
have, by far, the largest market share

p Another nice feature of the competition: often these two products
have the same syntax for control statements: this makes it easier for
a customer to switch from one to the other!

p So, while this course is about DFSORT, much of the content also
applies to SyncSort

Copyright ã 2024 by Steven H. Comstock 8 Introduction to DFSORT

SORT - Background, 2

p Today, DFSORT has evolved to be a very sophisticated tool that can:

¨ Sort the records in a file into a desired sequence based on one or
more sort keys

7 The records can arrive from a sequential file, a VSAM file, a
member of a PDS or PDSE, or a file in the zFS (z/OS File System -
files used by z/OS UNIX System Services)

â Or they can be inserted from any other source using a locally
written exit routine

7 You can sort all the records, or just some of the records

7 You can reformat the input records before or after sorting

â You can process records after sorting but before the actual
output writing using a locally written exit routine

7 The records can go to multiple output files

7 The output file(s) can be formatted using a rich collection of field
editing, page formatting, and report building features

¨ Merge records from multiple files into a single file - as long as all
the records have the same general layout and are in the same
relative sort sequence by one or more collation keys

¨ Copy the records from one file to another

p Sort, Copy and Merge can all filter records as described above, and
convert between FB and VB records

p DFSORT comes with a powerful utility, ICETOOL, and a high speed
replacement for IEBGENER called ICEGENER

¨ These are discussed in this course also

Copyright ã 2024 by Steven H. Comstock 9 Introduction to DFSORT

Computer Exercise: Setting up for labs

This lab establishes the environment for running all the subsequent labs in this
course. To do this, you will run a little dialog that:

1. Establishes the naming conventions to use for your data sets
(default: <tsoid>.TR.name)

2. Establish the zFS directories to use for holding zFS files for
 input and output for sort operations

(default: /<u/<tsoid>/SortData)

(Note: this is bypassed if you do not have access
 to the zFS, or if you blank out the directory name
 in the dialog when you run it)

The dialog will then create the following files for you:

<hlq>.TR.CONTACTS (flat file test data)
<hlq>.TR.CNTL (JCL library with some members already there)
<hlq>.TR.CUSTOMER (flat file test data)
<hlq>.TR.DATA (data library with some members already there)
<hlq>.TR.INPUTA (flat file test data, character, packed, binary data)
<hlq>.TR.INPUTX (flat file test data, character, packed, binary data)
<hlq>.TR.INPUTE (flat file test data, variable length records)
<hlq>.TR.LOCS (flat file test data)
<hlq>.TR.ORDERS (flat file test data)
<hlq>.TR.ZINPUTA (flat file test data, character data only)
<hlq>.TR.ZINPUTX (flat file test data, character data only)
<hlq>.TR.ZASCIIX (flat file test data, ASCII version of above file)

If you will be running the zFS-related labs, the dialog will also create the two
directories mentioned above.

To run this dialog, from ISPF option 6 enter this command:

===> exec '____________.train.library(b625strt)' exec

Note that the record layouts for all files are in the Appendix to this book.

Copyright ã 2024 by Steven H. Comstock 10 Introduction to DFSORT

SORT

Copyright ã 2024 by Steven H. Comstock 11 SORT

Section Preview

p The DFSORT Program

¨ DFSORT Capabilities

¨ JCL and Control Statements for DFSORT

¨ Introduction to INCLUDE / OMIT Statements

¨ Introduction to the INREC Statement

¨ Introduction to the SORT Statement

¨ Introduction to the OUTREC Statement

¨ Using SORT to do a copy

¨ Running Sorts (Machine Exercise)

This page intentionally left almost blank.

Copyright ã 2024 by Steven H. Comstock 12 SORT

DFSORT Capabilities

DFSORT

p Sort one file into a new sequence (SORT statement)

p Merge several files (already in the same relative sequence) into one
file (MERGE statement)

p Copy a file (SORT, MERGE, or OPTION statement)

p Inputs: Sequential, member of PDS or PDSE, VSAM, or zFS files

p Outputs: Sequential, member of PDS or PDSE, VSAM, or zFS

¨ VSAM files must be pre-defined unless SMS is installed and active
in your system

p Sort on subsets

¨ Only records that meet some criteria (INCLUDE statement)

¨ All records except those that meet some criteria (OMIT statement)

p Reformat records

¨ Before sorting (INREC statement)

¨ After sorting (OUTREC statement)

p Join records from two files based on one or more key fields prior to
sorting or copying (JOINKEYS, JOIN, REFORMAT statements)

p In this section, we provide a basic introduction to various DFSORT
control statements

¨ More complete discussions appear later

Copyright ã 2024 by Steven H. Comstock 13 DFSORT

DFSORT Control
DFSORT

JCL

//SORTIT EXEC PGM=SORT

//SORTIN DD point to the file to be sorted (may be concatenated inputs)

//SORTOUT DD point to the output location

//SYSIN DD for DFSORT control statements

//SYSOUT DD SYSOUT=* for DFSORT messages

.

. There are additional DD

. statements possible; they are

discussed later

DFSORT control statements

OPTION code content in columns 2-71, inclusive

INCLUDE

OMIT indicate continuation by comma at end of

INREC last operand on a line;

SORT continuation lines coded in 2-71 also

OUTREC

others, discussed later

C
o

p
y rig

h
t ©

2

0
2

4
 b

y S
te

 ve
n

 H
. C

o
m

s
to

c
k

1
4

D
F

S
O

R
T

Introduction to INCLUDE / OMIT Statements
DFSORT

p INCLUDE: only sort, copy, or merge records that meet the condition test(s)

p OMIT: sort, copy, or merge all records except those that meet the condition test(s)

¨ May only specify one INCLUDE or one OMIT; may not specify one of each

p Condition test(s) specified as "COND=" and a series of one or more tests:

Input record field, Relationship, Input record field

or

Input record field, Relationship, Constant

Where

¨ field is specified as starting_location, length, and data_type (CH, PD, ZD, FI, BI, etc.)

¨ Relationship is one of: EQ (equal), NE (not equal), GT (greater than), GE (greater than or
equal), LT (less than), or LE (less than or equal to)

¨ Constant is a numeric literal, a character string (C'...'), or a hex string (X'...')

p Tests are separated by "AND", or "&" or "OR" or "|"

C
o

p
y rig

h
t ©

2

0
2

4
 b

y S
te

 ve
n

 H
. C

o
m

s
to

c
k

1
5

D
F

S
O

R
T

Introduction to INCLUDE / OMIT Statements, Examples
DFSORT

OMIT COND=(34,5,CH,NE,C'ENTRY',AND,6,4,FI,GE,20,4,FI,
 OR,1,1,CH, EQ,X'FF')

INCLUDE COND=((3,3,CH,EQ,C'AAB'),&,
 ((17,7,CH,LT,333,7,CH),|,
 (220,2,CH,EQ,C'RR')))

Analyzes as…

INCLUDE COND=((3,3,CH,EQ,C'AAB'),&,((17,7,CH,LT,333,7,CH),|,(220,2,CH,EQ,C'RR')))

 field op literal field op field field op literal

Another example

OMIT COND=(20,4,FI,GT,4096)

C
o

p
y rig

h
t ©

2

0
2

4
 b

y S
te

 ve
n

 H
. C

o
m

s
to

c
k

1
6

D
F

S
O

R
T

Note that ANDs are evaluated before ORs; you can use parentheses to direct the order of evaluation

Introduction to the INREC Statement

DFSORT

INREC BUILD=([separator,]position,length[,...])

p Reformats the input records with only separator characters and the
described fields

¨ That is, describe how to take input records and build the actual
record to be sorted, copied, or merged

¨ The result of reformatting an input record is a "sort record" that
contains data from the original record and various filler data
(blanks, binary zeros, or literals); note: in this course, the term
"sort record" can also mean records to be copied or merged

7 So the BUILD operand describes how the sort record is
constructed from a combination of separator characters and data
from the input records

7 Note that FIELDS is a an older synonym for BUILD on both
INREC and OUTREC statements

â We will use BUILD in the lecture points, but you may find old
jobs that use FIELDS; FIELDS should only be used in SORT,
MERGE, and SUM statements

¨ The sort records are built from byte one; the order in which data
items are specified in the BUILD operand is the order they
appear in the sort record, immediately adjacent to one another

p Note: the brackets ("[" and "]" indicate a value is optional: do not
code brackets in your code

p Punctuation, as shown, counts …

Copyright ã 2024 by Steven H. Comstock 17 DFSORT

Copyright ã 2024 by Steven H. Comstock 18 DFSORT

INREC Operands

separator characters

nX — insert n bytes of blanks (1 < n < 4095), for example

30X

nZ — insert n bytes of binary zeroes (1 < n < 4095), e.g.

26Z

nC'...'— insert n repetitions of the string (1<n<4095);
or

nX'...'— string is hex or character string up to 256 characters

5C'*** HERE IT IS ***'

7X'80'

position,length

These two values are the actual starting position and length in the input
record of the field to be extracted and put into the next available position
in the "sort record"; you may build a sort record with no separators:

INREC BUILD=(5,20,37,3,99,3)

 Input
 Record:

 Sort
 Record:

INREC Operands, 2

Another example

¨ Extract fields from an input record to build a record to be sorted,
inserting some binary zeros to extend a packed decimal field:

INREC BUILD=(34,6,120,3,3Z,44,4)

p The SORT statement FIELDS values (next page) describe positions
in the “Sort Record”, not the input record

¨ If your input record is variable length, be sure to allow for the
4-byte RDW - the first data byte is position 5

Copyright ã 2024 by Steven H. Comstock 19 DFSORT

 Input
 Record:

 Sort
 Record:

Introduction to the SORT Statement

SORT

SORT FIELDS=(position,length,format,sequence[,...])

¨ Identify the field(s) to sort on, in decreasing order of importance

SORT FIELDS=(35,5,CH,A,3,2,PD,D,60,3,CH,A)

Notes on SORT FIELDS:

7 All fields must be contained in the first 32752 bytes of the input
records and the sum of the lengths of the control fields must be
less than or equal to 4092 bytes

7 If INREC is used to reformat input records, the position value is
the position within the reformatted record

7 Most common data formats are CH (character), BI (bit string), FI
(fixed point signed), PD (packed decimal), and ZD (zoned
decimal)

â After the data type, code A for ascending sequence or D for
descending

7 If you are sorting variable length records (including VSAM
variable length records), the position values must allow for a 4
byte RDW at the front of the data

7 Positions for BI data type can be specified on bit boundaries
(e.g.: 5.3 is byte 5, bit 4); you may also specify lengths as some
number of bytes and bits

Copyright ã 2024 by Steven H. Comstock 20 SORT

Introduction to the SORT Statement, 2

p If all the fields in a SORT statement are of the same data type, they
may be specified with just three attributes and the whole list of
fields must be preceded or followed by a FORMAT operand

For example

SORT FORMAT=CH,FIELDS=(35,5,A,3,2,D,60,3,A)

¨ The attributes are starting_position, length, and sequence

p If sorting will yield many records with the same sort key value (for
example, zip code, mail code, area code, country code type fields),
DFSORT does not guarantee records end up in the same relative
order as originally found

¨ Unless you code EQUALS on the SORT statement:

SORT FIELDS=(35,5,CH,A,3,2,PD,D,60,3,CH,A),EQUALS

¨ Note: When DFSORT is installed, EQUALS may be set as the
default; in this case you can specify NOEQUALS to suppress
this behavior

¨ EQUALS or NOEQUALS may also be specified on the OPTION
statement (discussed later) instead of on the SORT statement

Copyright ã 2024 by Steven H. Comstock 21 SORT

Introduction to the OUTREC Statement

OUTREC BUILD=([separator,]position,length[,...])

p Reformats the sorted, copied, or merged records on output

¨ Operands have the same meaning and syntax as for INREC, but
now formatting the final output records from the "sort record"s

p Nice for printed output especially

Example

OUTREC BUILD=(1X,1,30,2X,52,5,2X,31,10)

¨ Picture: building output record from sort record

1 blank
1-30 from sort record

2 blanks
52-56 from sort record

2 blanks
31-40 from sort record

p Another application: inserting delimiters such as commas when
passing the data to a program that handles such data (for example
downloading to a PC database product that can handle
comma-delimited input files)

Copyright ã 2024 by Steven H. Comstock 22 SORT

 Sort
 Record:

 Output
 Record:

Control Statement Actions

DFSORT

Copyright ã 2024 by Steven H. Comstock 23 DFSORT

//SYSIN

INCLUDE / OMIT

INREC

SORT

OUTREC

//SORTIN

//SORTOUT

//SYSOUT

Note: you can specify
DFSORT control
statements in any order,
but this is the order they
are actually used, so it
seems reasonable to
code them in this order

Sample SORT Steps

.

.

.
//STEP13 EXEC PGM=SORT
//SORTIN DD DISP=SHR,DSN=GR55.TESTER.DATA
//SORTOUT DD DSN=GR55.ADDRESS,DISP=(,CATLG),
// SPACE=(260,(10,50)),AVGREC=K
//SYSIN DD *

INCLUDE COND=...
SORT BUILD=...

//SYSOUT DD SYSOUT=*
.
.
.

.

.

.
//STEP23 EXEC PGM=ICEMAN
//SORTIN DD DISP=SHR,DSN=AR55.RESTER.DATA
//SORTOUT DD DSN=AR55.PHONES,DISP=(,CATLG),
// LIKE=GR55.ADDRESS
//SYSIN DD DISP=SHR,DSN=AR55.PARMLIB(PHONES)
//SYSOUT DD SYSOUT=*
.
.
.

p Note that the actual program name is ICEMAN; there are a number of
aliases established for compatibility with earlier products and
simplicity of use, including "SORT"

Copyright ã 2024 by Steven H. Comstock 24 DFSORT

Using SORT To Do a Copy Operation

p A COPY request may be made by …

¨ Specifying it on the SORT statement:

SORT FIELDS=COPY

¨ Or on the OPTION statement:

OPTION COPY

p When doing a COPY:

¨ INREC, OUTREC, INCLUDE, OMIT may be used (!)

7 This could be very useful!

p You can eliminate records with duplicate control key values by
including this DFSORT control statement:

SUM FIELDS=NONE

¨ Note that SUM will work for SORT and MERGE operations but
not COPY operations

Copyright ã 2024 by Steven H. Comstock 25 DFSORT

DFSORT Control Statement Coding Rules

p DFSORT control statements must follow these rules:

¨ Free form in columns 2-71

¨ Operator must be completely specified on one line, as well as
the first operand

¨ At least one space before the operator and at least one space
between an operator and its first operand

¨ Commas separate operands, with no extra spaces

¨ Continuation is indicated by comma-blank, semicolon-blank, or
colon-blank; continuation begins on the next line with the first
non-blank character

¨ Operators and operands must be entered in upper case EBCDIC
(note: non-numeric literals for operands may be upper case,
lower case, or mixed case, as appropriate to the operand)

¨ Operands of the form operand=value may also be coded
operand=(value) or operand(value); so these are equivalent:

7 SORT FIELDS=COPY

7 SORT FIELDS=(COPY)

7 SORT FIELDS(COPY)

â This is true for all operands for DFSORT for z/OS 1.10 and
later, but only some operands for earlier releases

¨ An asterisk in column 1 indicates a comment

¨ Blank lines may appear anywhere

Copyright ã 2024 by Steven H. Comstock 26 DFSORT

DFSORT Return Codes

p Each DFSORT job step returns one of these values:

¨ 0 - successful completion

¨ 4 - successful completion; an RC4 option was set to indicate one
of several possible situations (e.g.: a summary field overflowed
and OVFLO=RC4 was in effect)

¨ 16 - unsuccessful completion

¨ 20 - message data set missing

Copyright ã 2024 by Steven H. Comstock 27 DFSORT

A Preview: Some Other DFSORT Capabilities

p You can create multiple output files

¨ Reformatting records differently for different output files

¨ Splitting the records across different output files

p You can:

¨ Sort on two digit years (specify a century window through a
run-time option and identify the date format from a list of
options)

¨ Transform two-digit year dates to four-digit year dates

¨ Sort using locale processing

7 Allowing DFSORT to be sensitive to collating sequences that
differ between languages or cultural conventions

¨ Use a symbol-specifications file pointed at by a SYMNAMES DD
statement to sort on field names instead of offsets, lengths, and
data type (discussed shortly)

¨ And lots more, stay tuned

Copyright ã 2024 by Steven H. Comstock 28 DFSORT

Computer Exercise: Running SORTs

Running SORTs

In your TR.CNTL library is a member named SORTJOB. This contains the
basic JCL for running a sort. For the lab, you will use this as a starting point
to build other members that each run a single sort step.

For example, create members with names we'll assign (so we can reference
them later) such as SORT01, SORT02, and so on (details on the following
pages).

Reminder: the simplest way to create a new member based on an existing
one is to start with the member list in edit mode (ISPF 3.4, enter an 'e' next
to the library name). Then on the command line enter:

s sort01;copy sortjob

This will place you in edit of SORT01, ready to modify it for that sort, then to
submit the job.

In SORTJOB we use the following DD statement:

//SORTIN DD DISP=SHR,DSN=&HL..TR.--------

For each sort job, simply change the dashes to the low level qualifier of the
dsn you need to work with, for example:

//SORTIN DD DISP=SHR,DSN=&HL..TR.INPUTA

to reference your version of the TR.INPUTA data set; or:

//SORTIN DD DISP=SHR,DSN=&HL..TR.DATA(INPUTK)

to reference member INPUTK in your TR.DATA library.

NOTE: For all labs, unless otherwise specified, assume
SORTOUT is to go to a print file (SYSOUT).

Copyright ã 2024 by Steven H. Comstock 29 Running SORTs

Computer Exercise: Running SORTs, 2

So here are the member names you should create and the task each
separate job should accomplish:

1. SORT01

Sort the TR.INPUTA inventory file by Description, ascending. Include only
records that have a '3', '5', or '7' in the last position of Part Number.

Format the output lines:

 (two blanks)Description(three blanks)Part Number(three blanks)Category

Take some time to look at the SYSOUT file (Sort messages), try to pick out
the most useful information.

2. SORT02A, SORT02B

Sort the TR.INPUTX inventory file by ascending values in Category.
Do one run with EQUALS and one with NOEQUALS (see page 21)
and compare the outputs.

Format the output lines:

 (two blanks)Category(three blanks)Part Number(three blanks)Description

3. SORT03A, SORT03B

Run SORT02A and SORT02B adding the statement
SUM FIELDS=NONE

after the SORT command in both cases (see page 28). Compare the
results.

Copyright ã 2024 by Steven H. Comstock 30 Running SORTs

Computer Exercise: Running SORTs, 3

4. SORT04

Sort member INPUTG2 in your TR.DATA library into ascending sequence
of first name within last name; the output records should contain last
name, first name, employee number, and job title.

5. SORT05

Copy member INPUT1 in your TR.DATA library (see p. 27), unchanged.

6. SORT06

SORT member INPUT1 in ascending sequence by the sequence number
field, and output just the text.

7. SORT07

Sort TR.ZINPUTA into ascending sequence by Description; only include
records where quantity on hand is less than reorder level. Output
records should display Description, Part number, quantity on hand,
and quantity on order, with 2 spaces between the fields.

8. SORT08

Sort TR.ZINPUTX into ascending sequence by Old Part Number; output
records should display Old Part Number, Description, and Unit Price,
with spaces between the columns.

Copyright ã 2024 by Steven H. Comstock 31 Running SORTs

Computer Exercise: Running SORTs, 4

9. SORT09

Sort TR.INPUTE in ascending sequence by album title; the output records
should include album title and artist name.

Reminder: for variable length records, you must allow for the four byte
RDW at the front of the data records.

Note: if your SORTIN file is variable-length, then OUTREC, by default,
will also be variable-length, and you must allow for a leading four byte
RDW at the front of your OUTREC area.

In preparation for future work (note may not be possible if you are not on a
current version of z/OS):

Browse TR.ZASCIIX. On the command line issue ==> disp ascii
then End (F3).

Edit TR.ZASCIIX. On the command line issue ==> source ascii
Change the first record's part number PART03105 -> PART04105
then End (F3).

Copyright ã 2024 by Steven H. Comstock 32 Running SORTs

