
z/OS Assembler Programming Part 2: Interfaces

z/OS Assembler Programming Part 2: Interfaces - Course Objectives

On successful completion of this course, the student, with the aid of the
appropriate reference materials, should be able to:

1. Follow classic z/OS conventions regarding save area chaining and the
passing and receiving of parameters

2. Code or maintain Assembler programs that handle sequential files, using
QSAM to read, write, and update records

3. Write programs to handle variable length records using QSAM

4. Debug most program ABENDs, using z/OS full dumps or symptom dumps
to track down problems

5. Write mainline programs and subroutines; use the Program Binder to
combine mainline and subroutine programs

6. Use the Binder to maintain load modules by replacing existing CSECTs
with new versions of these CSECTs

7. Use the WTO, SNAP, and TIME macros

8. Use Dynamic Serial linkages (using LINK, LOAD, DELETE, XCTL) to
invoke subroutines

9. Use various other system services (GETMAIN, FREEMAIN, STCKCONV,
CONVTOD)

10. Create reentrant programs

11. Perform I/O against QSAM files while running in AMODE 31.

Note: this course focuses on AMODE 24 and AMODE 31 interfaces. It is a
prerequisite to course code C510, "z/OS Assembler Programming:
z/Architecture and z/OS" which covers the AMODE 64 interfaces (and lots
more).

1

C414 / 3 Days These Materials Copyright ã 2024 by Steven H. Comstock V5.1

z/OS Assembler Programming Part 2: Interfaces - Topical Outline

Day One

Introduction .. 5
Program linkages

Control Sections
Save Areas
Addressability
Return Codes
Typical Linkages
SAVE and RETURN macros
Getting the PARM value from EXEC statement

Working with files
Data set organizations and access methods
DCB Macros
OPEN, GET, PUT, CLOSE
Error handling: SYNAD routines
ABEND macro
Computer Exercise: Program Linkages and QSAM Files...................57

Subroutines and the Program Binder
CSECTs and the Program Binder
Assemble, Bind, and Run Data Flow
The Assembly Listing
Some Assembler Parameters
Passing Control: the CALL macro
The CALL Process
Object Modules and Load Modules
Program Binder control statements and PARMs
Managing Print Files
Computer Exercise: CALLing a Subroutine 97

2

C414 / 3 Days These Materials Copyright ã 2024 by Steven H. Comstock V5.1

z/OS Assembler Programming Part 2: Interfaces - Topical Outline, 2

Day Two

Program Binder and Maintenance
Impact of Changes to a Subroutine
Additional Program Binder Control Statements
Program Binder Processing
Computer Exercise: The Program Binder and Maintenance 110

Debugging and Dump Reading
Computer Exercise: ONION .. 114
Guidelines for Debugging
Program Termination
File Related Messages
Common System Completion Codes
z/OS Structure
Essential Control Blocks
Dump Reading
Debugging: The Larger Context

Some System Services .. 165
WTO - Write To Operator
SNAP - Take a Snapshot Dump
TIME - Get the Date and Time
STCKCONV - Convert a STCK value to Date and Time Format
CONVTOD - convert a Date and Time value to a TOD Format

Variable length records .. 183
Defining and Processing variable length records
Computer Exercise: Variable Length Records 187

3

C414 / 3 Days These Materials Copyright ã 2024 by Steven H. Comstock V5.1

z/OS Assembler Programming Part 2: Interfaces - Topical Outline, 3

Day Three

QSAM Locate Mode processing .. 190
GET and PUT using locate mode
Update-in-place: PUTX macro

31-Bit Addressability Considerations .. 195
Implications of z/OS

Dynamic Linkages .. 199
Static Linkages versus Dynamic Linkages
Module Attributes
The Search for Modules
LOAD, DELETE, LINK macros and services
Computer Exercise: Dynamic Serial Linkages 222

XCTL and Storage Management
XCTL - an introduction
GETMAIN / FREEMAIN
Subpools
XCTL Resumed
Computer Exercise: Using XCTL .. 246

Writing Reentrant Programs
Writing Reentrant Programs
Reentrant Save Area Chaining
Reentrant I/O
Reentrant Processing
Sample Reentrant Program
Computer Exercise: Making a Program Reentrant 261

I/O and Amode 31
AMODE 31 I/O Issues
AMODE 31, RMODE 24
AMODE 31, RMODE ANY

4

C414 / 3 Days These Materials Copyright ã 2024 by Steven H. Comstock V5.1

Pr ogramLin kages

Copyright ã 2024 by Steven H. Comstock 5 Program Linkages

Section Preview

p Program Linkages

¨ Control Sections

¨ Save Areas

¨ Addressability

¨ Return Codes

¨ Typical Linkages

¨ SAVE and RETURN Macros

¨ Getting the PARM from the EXEC Statement

Control Sections

p Programs are organized into "chunks" of code (instructions and / or
data areas called Control Sections, or CSECTs) that are the building
blocks of the Linkage Editor and the Program Binder

p The beginning of a CSECT is indicated by the appearance of either a
START or CSECT Assembler instruction:

csectname START value

or

csectname CSECT

Notes

¨ The csectname must follow the rules for names in Assembler,
with the furhter restriction that it may only be 8 characters long,
maximum

¨ There may only be one START statement in a program; there
may be any number of CSECT statements (although in this
course we will normally have only one CSECT per program)

¨ value specifies a starting value for the Assembler's location
counter (default: 0) in decimal or hex

¨ Each time a new CSECT statement is encountered, the
Assembler sets that control section's location counter to 0 (zero)

Copyright ã 2024 by Steven H. Comstock 6 Program Linkages

Assembler
Instructions

END

p A control section begins with a START or CSECT statement and
continues until ...

¨ A new CSECT is begun

¨ Or a DSECT is encountered

¨ Or an END statement is encountered:

 END [starting-location]

Notes

¨ The END statement must be the last statement in your program:
it denotes the end of the source module and any statements
following it are discarded

¨ starting-location represents where in the program execution
should begin when the program is actually run (the Entry Point)

7 The default starting-location is the first byte of the program

Copyright ã 2024 by Steven H. Comstock 7 Program Linkages

Assembler
Instruction

Save Areas

p There is only one set of general purpose registers in a CPU, yet
every program and subprogram needs to use these registers

p So, a convention has been established to allow any routine to use
the registers when it needs to

¨ Each program provides a register save area (or just "save area")

¨ When a program is called by another program, the called
program must save the registers of the calling program in the
save area provided by the calling program

¨ Before the called program returns to the calling program, it must
restore the calling program's registers

Copyright ã 2024 by Steven H. Comstock 8 Program Linkages

 Source: Assembler Services Guide

Register Save Area Layout

p Save areas are 18 words (72 bytes), organized as folllows:

+ 0 Only used by PL/I

+ 4 Calling program's save area (backward pointer)

+ 8 Called program's save area (forward pointer)

+12 C(R14) - Return address to this program

+16 C(R15) - Entry point address of subroutine

+20 C(R0)

+24 C(R1) - Parameter list address

+28 C(R2)

+32 C(R3)

+36 C(R4)

+40 C(R5)

+44 C(R6)

+48 C(R7)

+52 C(R8)

+56 C(R9)

+60 C(R10)

+64 C(R11)

+68 C(R12)

¨ means "points to" (that is, "contains the address of")

¨ "C(Rnn)" means "The contents of register 'nn' "

Copyright ã 2024 by Steven H. Comstock 9 Program Linkages

Linkage Conventions

p On entry to any program, the standard conventions expect the
following general purpose register contents

7 R1 - Address of list of parameter addresses (or zero if no
 parameters passed)

7 R13 - Address of register save area of calling program

7 R14 - Return address to calling program

7 R15 - Entry (starting) address of the called program

p Similarly, when your program calls another program or routine, you
are expected to set up the registers this way

p Note that these conventions work fine until you need to save all 64
bits of the general purpose registers

¨ 64-bit save area linkages are discussed in our course iwth
course code C500, "z/OS Assembler Programming Part 4:
z/Architecture and z/OS"

¨ But the vast majority of programs get along fine with these
conventions, which assume 32-bit register values are all that's
important

Copyright ã 2024 by Steven H. Comstock 10 Program Linkages

Return Codes

p When a subroutine returns, another convention is that the calling
routine will find a return code in R15

¨ Traditionally, a value of 0 means all went well

¨ Other values are often multiples of 4, with increasing severity of
error meanings

¨ It doesn't have to be that way, however, and the meanings of
return codes have to be agreed upon in advance by writers of
the calling and called routine

p For a mainline program, the value in R15 is passed back so it may
be tested by suceeding steps in the job, using the JCL COND
parameter or the IF JCL statement

Copyright ã 2024 by Steven H. Comstock 11 Program Linkages

On Entry To A Called Program

p Visually, the situation is this, just before a program gets control:

Copyright ã 2024 by Steven H. Comstock 12 Program Linkages

Calling Program

Called Program

Save Area

Save Area

Parm data

CALL ...
Return locationRegisters in CPU

R0

•

•

•

R15

R13

R12

R1

R14

Program Linkage On Entry

p Now, on entry to a program, the program must

¨ Save the calling program's registers in the calling program's
save area

¨ Establish addressability

¨ Save the address of the calling program's save area in the called
program's save area

¨ Provide own save area, pointed at by R13

¨ Save address of program's save area in calling program's save
area (Optional)

p Let's follow the process through ...

Copyright ã 2024 by Steven H. Comstock 13 Program Linkages

Save The Calling Program's Registers in the Calling
Program's Save Area:

p STM sets the registers down in the correct order

Copyright ã 2024 by Steven H. Comstock 14 Program Linkages

Calling Program

Called Program

Save Area

Parm data

MYPROG CSECT

 STM 14,12,12(13)

 LR 12,15

 USING MYPROG,12

 ST 13,SAVE+4

 LA 14,SAVE

 ST 14,8(13)

 LR 13,14
After this, we don't care about
the value in R14 until we are
ready to return to the calling
program

Save Area

CALL ...
Return locationRegisters in CPU

R0

•

•

•

R15

R13

R12

R1

R14

Establish Addressability:

p Use machine instruction (such as LR) and Assembler instruction
(USING)

Copyright ã 2024 by Steven H. Comstock 15 Program Linkages

Calling Program

Called Program

Save Area

Parm data

MYPROG CSECT

 STM 14,12,12(13)

 LR 12,15

 USING MYPROG,12

 ST 13,SAVE+4

 LA 14,SAVE

 ST 14,8(13)

 LR 13,14

After this, we don't need
the value in R15

Save Area

CALL ...
Return locationRegisters in CPU

R0

•

•

•

R15

R13

R12

R1

R14

Save Pointer to Calling Program's Save Area:

p The second word of our save area is available for that:

Copyright ã 2024 by Steven H. Comstock 16 Program Linkages

Save Area

CALL ...
Return locationRegisters in CPU

R0

•

•

•

R15

R13

R12

R1

R14

Calling Program

Called Program

Save Area

Parm data

MYPROG CSECT

 STM 14,12,12(13)

 LR 12,15

 USING MYPROG,12

 ST 13,SAVE+4

 LA 14,SAVE

 ST 14,8(13)

 LR 13,14

Provide Own Save Area, Pointed at by R13 and
Save Address of Program's Save Area in Calling

Program's Save Area:

p One way to do this uses these
instructions:

Copyright ã 2024 by Steven H. Comstock 17 Program Linkages

Calling Program

Called Program

Save Area

Parm data

MYPROG CSECT

 STM 14,12,12(13)

 LR 12,15

 USING MYPROG,12

 ST 13,SAVE+4

 LA 14,SAVE

 ST 14,8(13)

 LR 13,14

Now we are ready to do
the work the program was
written for

Save Area

CALL ...
Return locationRegisters in CPU

R0

•

•

•

R15

R13

R12

R1

R14

Program Linkage On Exit

p On exit, a program must

¨ Restore calling program's registers from calling program's save
area

¨ Set a return code in R15 (optional)

¨ Branch to the address in R14

p Let's follow that process through, too ...

Copyright ã 2024 by Steven H. Comstock 18 Program Linkages

Pick Up Address of Calling Program's Save Area:

p This restores R13 to point to previous save area

Copyright ã 2024 by Steven H. Comstock 19 Program Linkages

Calling Program

Called Program

Save Area

 •

 •

 L 13,4(13)

 LM 14,12,12(13)

 SR 15,15

 BR 14

 •

 •

The two save areas still
point to each other, but we
don't care any longer

Save Area

CALL ...
Return locationRegisters in CPU

R0

•

•

•

R15

R13

R12

R1

R14

Restore Calling Program's Registers:

p Pick 'em up just the opposite way we put 'em down

Copyright ã 2024 by Steven H. Comstock 20 Program Linkages

Calling Program

Called Program

Save Area

Parm data

 •

 •

 L 13,4(13)

 LM 14,12,12(13)

 SR 15,15

 BR 14

 •

 •

Registers now look just as
they did on entry to the
program

Save Area

CALL ...
Return locationRegisters in CPU

R0

•

•

•

R15

R13

R12

R1

R14

Set a Return Code in R15:

p In this example, we set a value of zero

Copyright ã 2024 by Steven H. Comstock 21 Program Linkages

Calling Program

Called Program

Save Area

 •

 •

 •

 L 13,4(13)

 LM 14,12,12(13)

 SR 15,15

 BR 14

 •

Consider: how to set
other return code values?

00 00 00 00

CALL ...

R14

Return location

R15

R13

R12

R0

•

•

•

Registers in CPU

R1

Parm data

Save Area

Branch to Address in R14:

p This returns to the calling program

Copyright ã 2024 by Steven H. Comstock 22 Program Linkages

R14

R15

R13

R12

Calling Program

CALL ...
B BTABLE(15)

Calling program examines
value in R15, perhaps

Save Area

 •

 •

 L 13,4(13)

 LM 14,12,12(13)

 SR 15,15

 BR 14

 •

 .

Called Program

Registers in CPU

R0

Parm data

R1•

•

•

Save Area

00 00 00 00

Typical Program Structure

p The basic program linkages are illustrated here

MYPROG CSECT
 STM 14,12,12(13) Save registers
 LR 12,15 Establish
 USING MYPROG,12 addressability
* Save pointer to calling programs registers
 ST 13,SAVE+4 Store backward ptr
* Point to own save area
 LA 14,SAVE
 ST 14,8(13) Store foreward ptr
 LR 13,14 Establish own s.a.
**
 .
 .
 .
**
* Pick up address of calling programs save area
 L 13,4(13)
 LM 14,12,12(13) Restore registers
 SR 15,15 Return code = 0
 BR 14 Return to z/OS
**
*
* Constants and data areas
*

SAVE DC 18F'0'
 END MYPROG

Copyright ã 2024 by Steven H. Comstock 23 Program Linkages

Services for Assembler Language Programs

p IBM provides a large number of services that are available for
application programs

¨ A set of macros are provided to request some of these services
from Assembler language programs

¨ A set of subroutines ("callable services") are provided to request
the other services

p These services are documented in these IBM publications:

¨ MVS Programming: Assembler Services Reference, Volume 1
(ABE-HSP) and

¨ MVS Programming: Assembler Services Reference, Volume 2
(IAR-XCT)

7 These are the publications to use when looking up
non-I/O-related services

p Regarding macros, remember, continuation in Assembler requires:

¨ Comma before column 72

¨ Non-blank character in column 72

¨ Continuation begins exactly in column 16

Copyright ã 2024 by Steven H. Comstock 24 Program Linkages

The SAVE Macro

Samples

 SAVE (14,12)

 SAVE (14,12),,'Entry to first routine'

 SAVE (14,12),,*

Working

¨ Generates the STM instruction of standard linkage conventions

¨ If third operand is specified, the macro generates a DC with the
constant and a branch around the constant

7 An asterisk (*) implies the constant to use is the name on the
SAVE macro; if no name on the SAVE macro use the name of
the current CSECT

¨ The second operand is intended for non-standard register saving

7 In particular, if you don't specify (14,12) in the first operand,
coding a 'T' in the second operand ensures registers 14 and 15
are saved in the appropriate place in the save area; for example:

SAVE (3,7),T

7 Not used much anymore, but you may see old code that uses
this

Copyright ã 2024 by Steven H. Comstock 25 Program Linkages

 Source: Assembler Services Reference, Vol. 2

The RETURN Macro

Samples

 RETURN (14,12)

 RETURN (14,12),,RC=n

 RETURN (14,12),,RC=OK

 RETURN (14,12),,RC=(15)

Working

¨ Generates the LM and BR instructions

7 But not the “L 13,4(13)”

¨ If RC= operand specified, the macro generates the code to place
return code in R15

7 'n' is an integer between 0 and 4095

7 'OK' is an example of using a symbol; 'OK' must be defined
something like this:

 OK EQU 12

7 If you code RC=(15), that says the return code is already in R15
and the RETURN macro generated code should not disturb it

â Only Register 15 may be used in this way

¨ Same remarks about the second operand as for SAVE

Copyright ã 2024 by Steven H. Comstock 26 Program Linkages

Standard Linkages Using SAVE and RETURN

p Applying these new macros yields:

MYPROG CSECT
 SAVE (14,12) Save registers
 LR 12,15 Establish
 USING MYPROG,12 addressability
* Save pointer to calling programs registers
 ST 13,SAVE+4 Store backward ptr
* Point to own save area
 LA 14,SAVE
 ST 14,8(13) Store foreward ptr
 LR 13,14 Establish own s.a.
**
 .
 .
 .
**
* Pick up address of calling programs save area
* and return to z/OS with a zero return code
 L 13,4(13)
 RETURN (14,12),,RC=0
**
*
* Constants and data areas
*

SAVE DC 18F'0'
 END MYPROG

p Most installations have their own home-grown linkage macros,
usually named something like INIT, EXIT, ENTER, LEAVE, and so on

¨ Typically they also have options for establishing multiple base
registers and other useful functions

¨ Find out what your installation uses

Copyright ã 2024 by Steven H. Comstock 27 Program Linkages

up to 100 characters

Gaining Access to the PARM Field

If program is invoked by:

//STEPX EXEC PGM=MYPROG,PARM='up to 100 characters'

At run time, program has access to the parm data

¨ R1 points to a pointer to the data:

p To get to the parm data, code something like:

 L 1,0(1) Pick up addr of length
 LH 2,0(1) Pick up length
 LA 3,2(1) Pick up addr of data

Copyright ã 2024 by Steven H. Comstock 28 Program Linkages

Halfword; contains length
of parm data following

R1

Uses of the PARM Field

p Once you have a pointer to the data, how can your program use it?

¨ This depends on the program design: you choose what the
program expects to get

7 Perhaps title information, processing switches, run-as dates, etc.

p Techniques that might be useful in dealing with PARM data

¨ DSECTs

¨ EX instruction (for working with variable length fields)

¨ TRT instruction (to scan for particular characters)

Copyright ã 2024 by Steven H. Comstock 29 Program Linkages

