
z/OS Assembler Programming - Part 3
z/Architecture and z/OS

1

C510 / 4 Days These Materials Copyright ã 2024 by Steven H. Comstock V1.1

z/OS Assembler Programming: z/Architecture and z/OS - Course Objectives

On successful completion of this course, the student, with the aid of the
appropriate reference materials, should be able to:

1. Describe the major architectural changes introduced with the z/Architecture
class of mainframes

2. Write Assembler programs that use the new instructions, particularly
* Long displacement instructions
* Relative branch instructions
* Instructions to set and test current addressing mode
* Instructions to load all or parts of 64-bit registers, and to shift

and rotate bits within registers
* Instructions to perform 64-bit binary arithmetic
* Instruction to test packed decimal data for validity
* New instructions that can set and test bits in storage or registers

3. Work with files encoded in EBCDIC, ASCII, or Unicode

4. Code, assemble, bind, and run programs that run AMODE64

5. Use new features of DROP, EQU, ORG, and CNOP

Note: the instructor may elect to skip over content in this course that is not
relevant to your installation. This may change the anticipated day breaks, or
even shorten the course.

But any omitted content remains in the handout for your later study, should you
so wish.

2

C510 / 4 Days These Materials Copyright ã 2024 by Steven H. Comstock V1.1

z/OS Assembler Programming: z/Architecture and z/OS - Topical Outline

Day One

Introduction to the Course
General Introduction
z/Architecture
Numbers and Numeric Terms

Fundamentals - A Quick Review
Programming Concepts
Source, Object, and Load Modules
Memory and Data Representation
Addresses
The CPU
Computer Exercise: Setup for Labs ... 42
Machine Instruction Formats
Base / Displacement Addresses
Assembler language and the High Level Assembler (HLASM)
Basic Program Structure
Computer Exercise: Assembling, Linking, Running 71

The Advent of z/Architecture
The CPU
The Assembler, Part 1
Computer Exercise: The Assembler, Part 1...................................... 81

The Assembler, Part 2
Assembler Parms
Sources for Assembler Parms (Installed defaults, *PROCESS statements,

ASMAOPT data set, PARM on EXEC JCL statement)
Computer Exercise: Assembler Parms .. 111

3
C510 / 4 Days These Materials Copyright ã 2024 by Steven H. Comstock V1.1

z/OS Assembler Programming: z/Architecture and z/OS - Topical Outline, p.2.

Day Two

Linkage Issues - Branching and AMODE Setting
PSW Format
Address Calculation
Register Format
Loading Addresses LA, LAY, LARL
Long Displacement Facility
Changing Addressing Modes
Passing Control Without Switching AMODE
Extended Mnemonics
Instruction Analogs
Passing Control And Switching AMODE
Switching AMODE Without Passing Control
Testing the Current AMODE
Running Around in AMODE-64
Computer Exercise: Setting and Testing AMODEs 148

Storage Management and I/O Concerns
Obtaining Storage
AMODE 31 I/O Issues
Notes
Computer Exercise: Setting up I/O for AMODE 31 160

Register Management
Storing Register Contents, Unchanged, To Memory
Loading Memory Contents, Unchanged, Into Registers
Move Data (unchanged) Between Registers
Linkage conventions
Computer Exercise: Preparing for 64-bit Programs 191

4

C510 / 4 Days These Materials Copyright ã 2024 by Steven H. Comstock V1.1

z/OS Assembler Programming: z/Architecture and z/OS - Topical Outline, p.3.

Day Two, continued

Macro extensions and debugging
Macro support (SYSSTATE, CALL, IAVR64)
Debugging information
Symptom dumps
SYSUDUMPS
Computer Exercise: Using Memory Objects .. 224

Day Three

Decimal Data
Numeric characters - EBCDIC
Numeric characters - ASCII
Numeric characters - Unicode
Zoned decimal data and signs

Decimal Data, continued
Packed decimal
PACK, PKA, PKU, UNPK, UNPKA, UNPKU, TP
CVB, CVBY, CVBG, CVD, CVDY, CVDG
Computer Exercise: Packed Decimal Data .. 245

Binary Arithmetic
Halfword Binary Arithmetic
Fullword and doubleword binary arithmetic
Logical binary loads
Other binary loads
Logical binary arithmetic
Computer Exercise: Binary Arithmetic ... 274

5

C510 / 4 Days These Materials Copyright ã 2024 by Steven H. Comstock V1.1

z/OS Assembler Programming: z/Architecture and z/OS - Topical Outline, p.4.

Day Three, continued

Boolean Instructions
Working with bits
OR instructions
AND instructions
Exclusive OR instructions
Test Under Mask instructions
Halfword Immediate Test instructions
Load and Test instructions
Zero Out Parts of a Register

Shifting and Rotating - Bits in Registers
Shift Instructions
Grande Shifts
Shift Instruction Processing
Rotate Instructions

Working With Character Strings
Working With Character Strings in z/Architecture
Interruptible Instructions
CPU-Determined Unit of Processing
More Instructions for Working With Character Strings in z/Architecture
Additional long displacement instructions
TRTR

Working With ASCII Data in z/OS
Encoding Schemes
Working With ASCII Data in z/Architecture
Big Endian and Little Endian
Load Reversed
Store Reversed
Working With ASCII Data, continued
Computer Exercise: Supporting ASCII Data .. 324

6

C510 / 4 Days These Materials Copyright ã 2024 by Steven H. Comstock V1.1

z/OS Assembler Programming: z/Architecture and z/OS - Topical Outline, p.5.

Day Four

Introduction to Unicode
Characters, Glyphs, and Fonts
Coding Schemes and Codepages
Unicode

Working With Unicode Strings in z/Architecture
CUUTF, CUTFU, CLCLU, MVCLU, TROO, TROT, TRTO, TRTT
CU24, CU21, CU42, CU41, CU12, CU14, SRSTU

The Extended-immediate Facility
AF, AGFI, ALFI, ALGFI, CFI, CGFI, CLFI, CLGFI, SLFI, SLGFI, NIHF, NILF,
XIHF, XILF, OIHF, OILF, IIHF, IILF, LGFI, LT, LTG, LBR, LGBR, LHR,
LGHR, LLCR, LLGCR, LLC, LLHR, LLGHR, LLH, LLIHF, LLILF

The Dead Zone, and More
The z/OS Address Space
The Dead Zone
The IEABRC macro and IEABRCX copy book
Computer Exercise: Using IEABRCX .. 376

More Thoughts on AMODE64
The Assembler and the Binder
Program Fetch
More Linkage Issues
AMODE64 Linkages
Macro support for AMODE64 programs

HLASM update
Reference external symbols on RI instructions
Enhancements to EQU, ORG, CNOP
Extended mnemonics
Address space partitioning

7

C510 / 4 Days These Materials Copyright ã 2024 by Steven H. Comstock V1.1

z/OS Assembler Programming: z/Architecture and z/OS - Topical Outline, p.6.

Day Four,continued

Newer hardware instructions
Overview
Load and Store instructions
Compare and Branch, Compare and Trap, other New Compare Instructions
New Execute Instruction
Working with binary data - add, multiply, rotating bits in registers
New Move instructions
New Translate and Test instructions
Computer Exercise: Using Compare and Branch 436

More High Level Assembler
Additional extended mnemonics
Mnemonic tagging

More Instructions by Facility
Overview
High-Word Facility instructions
Interlocked-Access Facility instructions
Load/Store-on-condition Facility instructions
Distinct Operands Facility instructions

Still more instructions
The Miscellaneous-instruction-extensions facilty
The Load-and-trap facility
The Interlock-access facility, 1 and 2
The Load/Store-on-Condition facilty
The Execution-hint facility
The Processor-assist facility
The Transaction-execution facilty

Appendix: Listing of ASMREPT code as supplied

Index

A Note From the Course Developer

p Covering over 500 machine instructions in just a few days, this could
be a very boring, dull, soul-crushing course

¨ ... UNLESS ...

7 You take an active approach to absorbing the content; for
example:

â Whenever instructions are discussed, you make sure you can
describe how each one works and how you might use it in your
coding, personally

â Make a point of noting the instructions likely to be most useful for
you; actually write out examples of how you might code them

â During the labs (machine exercises), feel free to add additional
code to test instructions

p IBM's mainframes have gone through immense changes over the last 60
years, getting richer - more complex - with each iteration

¨ For example, there are now over 1,000 machine instructions
available, including floating point, timer / clock, privileged
instructions, and more!

p And even so, backward compatability has been a central tenet:

¨ Continue to improve while preserving past investments in
application development

8

C510 / 4 Days These Materials Copyright ã 2024 by Steven H. Comstock V1.1

A Note From the Course Developer, 2

p This couse is designed for experienced Assembler programmers

¨ From two months after taking the intro courses, to 30+ years
of application programming experience in Assembler

p The focus of this course is on describing features introduced
with z/Architecture hardware and the latest version of z/OS
software that allow and enhance application development

¨ It is an exploration of how to continue application
development in the new world

7 New hardware instructions that are useful for application
programmers

7 Expanded / enhanced Assembler features

7 Managing storage

7 Linkage conventions

7 Miscellaneous changes of interest

p Note that the instructor may choose to skip content judged not to
be relevant to your installation; the content remains in the
handout as possible reference materials if you are interested

p To break things up a bit, we intermingle Assembler statements
and / or system macros between sections about machine
instructions

p Some things I've learned while developing this course:

¨ Running code above the bar is seldom (if ever) needed

¨ Working with data above the bar is not always best for
performance

¨ Using reentrant code is counter productive in
non-multi-tasking environments

7 Nonetheless, these topics are each addressed to some
degree in this course

9

C510 / 4 Days These Materials Copyright ã 2024 by Steven H. Comstock V1.1

IBM Reference Documents

p The content of this course draws upon these IBM publications

¨ While the course content is focused on the details we consider
most important / relevant, these publications contain all the details

¨ You may wish to locate / download these document:

https://www.ibm.com/docs/en/module_1678991624569/pdf/SA22-7832-13.pdf
z/ Architecture Principles of Operation

https://www.ibm.com/support/pages/sites/default/files/2022-09/SA22-7871-11.pdf
Reference Summary

https://www.ibm.com/docs/en/SSENW6_1.6.0/pdf/asmg1025_pdf.pdf
HLASM 1.6 General Information

https://www.ibm.com/docs/en/SSENW6_1.6.0/pdf/asmp1024_pdf.pdf
HLASM Programmer's Guide

https://www.ibm.com/docs/en/SSENW6_1.6.0/pdf/asmr1024_pdf.pdf
HLASM Language Reference

https://www.ibm.com/docs/en/SSLTBW_3.1.0/pdf/ieaa600_v3r1.pdf
Assembler Services Guide

https://www.ibm.com/docs/en/SSLTBW_3.1.0/pdf/ieaa700_v3r1.pdf
Assembler Services Reference, Vol. 1

https://www.ibm.com/docs/en/SSLTBW_3.1.0/pdf/ieaa900_v3r1.pdf
Assembler Services Reference, Vol. 2

https://www.ibm.com/docs/en/SSLTBW_3.1.0/pdf/ieab100_v3r1.pdf
Program Management: User's Guide and Reference

https://www.ibm.com/docs/en/SSLTBW_3.1.0/pdf/idad500_v3r1.pdf
Macro Instructions for Data Sets

10

C510 / 4 Days These Materials Copyright ã 2024 by Steven H. Comstock V1.1

Introduction

Copyright ã 2024 by Steven H. Comstock 11 Introduction

Section Preview

p Introduction to the Course

¨ General Introduction

¨ z/Architecture

¨ Numbers and Numeric Terms

¨ Context and Course Flow

General Introduction

p This course is designed to introduce Assembler programmers to the
64-bit based hardware and software from IBM

¨ Emphasis is on the impact to applications and application
programmers

7 That is, little or no examination of system, control, I/O, or floating
point facilities and instructions

7 No examination of instructions and features used for system
internals, message- or data-encryption, neural network
processing, and the like

7 No- to minimal-examination of instructions designed to be used
by compilers and special runtime environments (e.g. Java, etc.)

7 No examination of operational impacts

¨ Focus is on z/OS

7 That is, no examination of z/VM, z/VSE, z/TPF, or Linux on z

p We assume the student is an experienced OS/390 or z/OS Assembler
applications programmer

¨ Systems programmers may find this a useful introduction, but
they may well need more depth than is presented here

Copyright ã 2024 by Steven H. Comstock 12 Introduction

z/Architecture

p The IBM 64-bit mainframe has been named "z/Architecture" to
contrast it to earlier mainframe architectures such as

¨ S/360

¨ S/370

¨ 370-XA

¨ ESA/370

¨ ESA/390

p Although there is a clear continuity, z/Architecture also brings
significant changes...

¨ 16 64-bit General Purpose Registers (previously 32-bit)

¨ 16 64-bit Control Registers (well, not really new)

¨ 16 64-bit Floating Point Registers (previously just 4 registers)

¨ 32 128-bit Vector Registers (previously optional)

¨ 128-bit PSW (previously 64-bit)

¨ Tri-modal addressing (24-bit, 31-bit, 64-bit)

¨ Access to very large address spaces

p There is tremendous complexity behind the operation of z/OS, but
we will use the illusion that your application program is running
under one CPU in a single virtual storage

¨ We begin with some basic terms about numbers ...

Copyright ã 2024 by Steven H. Comstock 13 Introduction

Numbers and Numeric Terms

p The numbers possible with 64-bit integers and addresses are large,
so we find we may need to refresh / introduce the proper numeric
terms, at least as far as American English goes

¨ For counting ...

For this many digits We use the term

 9 units
 99 tens
 999 hundreds
 9,999 thousands

 9,999,999 millions

 9,999,999,999 billions

 9,999,999,999,999 trillions

 9,999,999,999,999,999 quadrillions

 9,999,999,999,999,999,999 quintillions

p The largest binary number in 64 bits is, in decimal:

¨ 0 - 18,446,744,073,709,551,615 if unsigned

¨ -9,223,372,036,854,775,808 to +9,223,372,036,854,775,807 if signed

Copyright ã 2024 by Steven H. Comstock 14 Introduction

Numbers and Numeric Terms, 2

p But, in terms of measurements (for example number of bits or bytes
of memory or disk space) the language has gotten trickier

p First, we have historically used these terms

¨ kilobit, kilobyte (kb, kB) - 1,024 bits or bytes

¨ Megabit, Megabyte (Mb, MB) - 1,048,576 bits or bytes

¨ Gigabit, Gigabyte (Gb, GB) - 1,073,741,824 bits or bytes

¨ Terabit, Terabyte (Tb, TB) - 1,099,511,627,776 bits or bytes

¨ Petabit, Petabyte (Pb, PB) - 1,125,899,906,842,624 bits or bytes

¨ Exabit, Exabyte (Eb, EB) - 1,152,921,504,606,846,976 bits or bytes

p But these numbers are based on powers of 2, while engineers have
historically worked with powers of 10 and use these terms:

¨ kilobit, kilobyte (kb, kB) - 1,000 bits or bytes

¨ Megabit, Megabyte (Mb, MB) - 1,000,000 bits or bytes

¨ Gigabit, Gigabyte (Gb, GB) - 1,000,000,000 bits or bytes

¨ Terabit, Terabyte (Tb, TB) - 1,000,000,000,000 bits or bytes

¨ Petabit, Petabyte (Pb, PB) - 1,000,000,000,000,000 bits or bytes

¨ Exabit, Exabyte (Eb, EB) - 1,000,000,000,000,000,000 bits or bytes

p These differences can cause real incompatibility problems in
designs or standards, and thus manufacturing, costing, and pricing

Copyright ã 2024 by Steven H. Comstock 15 Introduction

Numbers and Numeric Terms, 3

p In 1998, the International Electrotechnical Commission (IEC) defined
a standard set of terms and prefixes to be used to distinguish
powers of two from powers of ten

p So these are the terms one should use when referencing numbers
based on powers of two that describe quantities:

¨ Kibibit, Kibibyte (Kib, KiB) - 1,024 bits or bytes

¨ Mebibit, Mebibyte (Mib, MiB) - 1,048,576 bits or bytes

¨ Gibibit, Gibibyte (Gib, GiB) - 1,073,741,824 bits or bytes

¨ Tebibit, Tebibyte (Tib, TiB) - 1,099,511,627,776 bits or bytes

¨ Pebibit, Pebibyte (Pib, PiB) - 1,125,899,906,842,624 bits or bytes

¨ Exbibit, Exbibyte (Eib, EiB) - 1,152,921,504,606,846,976 bits or
bytes

p The point of all this is that, for example, 65,538 bytes is 64KiB and
18,446,744,073,709,551,616 bytes is 16EiB, not 18EiB

p It is recommended that the second syllable ("bi") be pronounced as
"bee"; the "bi" indicates "binary" - powers of two

p It is not clear if these standards will be widely adopted or used
outside of technical areas, and we may mix the new with the old
while we go through a period of transition

Copyright ã 2024 by Steven H. Comstock 16 Introduction

Context and Course Flow

p We'll start by doing a quick review of the z/OS world before 64-bit
architecture

p Then describe the environment in the 64-bit world

¨ To demonstrate the big picture of the essential differences

p So think of the upcoming section as "before-64" followed by
"after-64"

¨ So we can clearly see the transitions to make

Copyright ã 2024 by Steven H. Comstock 17 Introduction

This page intentionally left almost blank.

Copyright ã 2024 by Steven H. Comstock 18 Introduction

Fundamentals

Copy right Ó 2024 by Ste ven H. Comstock 19 Fundamentals

Section Preview

p Fundamentals - A Quick Review

¨ Programming Concepts

¨ Source, Object, and Load Modules

¨ Memory and Data Representation

¨ Addresses

¨ The CPU - pre-z/Architecture

¨ Setting Up For Labs (Machine Exercise)

¨ Machine Instruction Formats

¨ Operand Addresses

¨ Assembler Language and the High Level Assembler
(HLASM)

¨ Basic Program Structure

¨ Assembling, Linking, Running (Machine Exercise)

Computer Programs

p A computer program is a series of instructions that specifies the
operations a computer should perform

p Some instructions may be used by all programs

¨ These instructions are called unprivileged, and these are the
instructions discussed in this course

7 We omit discussion of floating point and vector instructions

¨ Most application programs use only these instructions

p Some instructions may only be used by authorized programs

¨ These instructions are called privileged instructions, and they
may only be issued by programs such as the Operating System

7 There is also a category of instructions called semi-privileged,
which we lump together with the privileged instructions

¨ Application programs may request the Operating System to
issue privileged instructions through special interfaces

7 Most commonly, application programs request data transfer
between memory and external devices through interfaces with
names like READ and WRITE, GET and PUT, and so on

Copy right Ó 2024 by Ste ven H. Comstock 20 Fundamentals

Types of Operations

p Unprivileged instructions are very elementary and can be grouped
into only a few types of operations. The most common types of
operations are

¨ Arithmetic (add, subtract, multiply, divide)

¨ Transformation (move, manipulate, change)

¨ Comparison (compare, test)

¨ Order changing (change the sequence of instruction execution)

Copy right Ó 2024 by Ste ven H. Comstock 21 Fundamentals

Instruction Execution

p The instructions in a computer program are normally executed in a
sequential manner, from first to last:

.

.

.
add
add
multiply
move
subtract
.
.
.

p So the order in which you code (write) the instructions is the order
in which they will execute

Copy right Ó 2024 by Ste ven H. Comstock 22 Fundamentals

Branching

p An order changing instruction (usually called a "Branch" in
Assembler and "Go To" or "Jump" in other languages) tells the
computer to proceed to an instruction not in the normal sequence

p This enables the computer to repeat a set of instructions as often as
necessary:

.

.

.
add

instruction_200 add
multiply
move
subtract
.
.
.
subtract
branch to instruction_200

p This structure is called a loop

Copy right Ó 2024 by Ste ven H. Comstock 23 Fundamentals

Conditional Branching

p Combining a compare or test instruction with an instruction that
branches or not depending on the result of the compare or test, we
can tell the computer to execute various sets of instructions under
different situations:

add
instruction_60 move

add
.
.
.
compare data1, data2
branch-if-equal to instruction_60
subtract
multiply
subtract
compare data3, data4
branch-if-high to instruction_3000
branch-if-low to instruction_2000
move
move
add
.
.
.

p On a conditional branch, if the branch is not taken, execution
continues normally, to the next sequential instruction (nsi)

Copy right Ó 2024 by Ste ven H. Comstock 24 Fundamentals

Modules

p A computer program is written in a particular programming language
- Assembler language in this course

p Code the program following the rules for the language, and then key
the program into the system

¨ This initial format is called a source module

¨ Source modules are not executable by the computer

p Feed the source program into an IBM-supplied program called the
Assembler

¨ The Assembler reads source code and converts it to a
machine-readable format called an object program or object
module

¨ Object modules are not executable by the computer

p Feed one or more object modules into an IBM-supplied program
called the Linkage Editor

¨ The Linkage Editor produces an executable, machine readable
format called a load module

¨ Load modules are stored in libraries, ready to run whenever they
are invoked

¨ Most recently, the Linkage Editor has been suplemented by a
program called the Program Binder, which serves the same role
but can produce load modules or program objects (a specially
formatted version of load modules)

Copy right Ó 2024 by Ste ven H. Comstock 25 Fundamentals

Module Translations

p In this class, we concentrate on writing source code; procedures to
do the necessary Assembles, Link Edits, and runs will be provided
to you

Copy right Ó 2024 by Ste ven H. Comstock 26 Fundamentals

Assembler

Linkage Editor
or

Program Binder

Source Module

Load Module or Program Object
(ready to run)

Object Module

Source Instruction Format

p An imperative instruction in Assembler source format has three
components to it:

label

¨ Optional; only needed if an instruction is to be referenced by a
branch instruction; if present, must begin in column 1

operation

¨ A word, abbreviation, or mnemonic that describes the actual
operation the computer is to perform (for example: add, move);
begins after at least one space after any label

operands

¨ A description that identifies where the data to be operated on is
located; for a branch instruction, this is the label of the
instruction to be branched to

¨ Most instructions require two operands; the result of arithmetic
and transformation instructions generally replaces one of the
operands (usually the first)

7 For example,

 ADD FLDA,FLDB

would add the contents of FLDA and FLDB and place the sum
into FLDA

¨ To talk about operands, we need to talk about data
representation, memory organization, and addressing ...

Copy right Ó 2024 by Ste ven H. Comstock 27 Fundamentals

Computer Memory

Is a string of Bits (Binary digits: objects which can only have a value of 0 or 1)

xxxxxxxxxxxxxxxxxxxxxxxxxxxxx...

p Organized into bytes of 8 bits each

|xxxx xxxx|xxxx xxxx|xxxx xxxx| ...

Data and programs are represented in memory as strings of bits

C
o

p
y rig

h
t ©

 2
0

2
4

 b
y S

te
 ve

n
 H

. C
o

m
s
to

c
k

2
8

M
e

m
o

ry

Data Representation

p Different types of data are represented in different ways

p Primary data types:

¨ Character string

¨ Packed decimal

¨ Binary integer

¨ Floating point (Short, long, extended formats)

¨ Instructions

C
o

p
y rig

h
t ©

 2
0

2
4

 b
y S

te
 ve

n
 H

. C
o

m
s
to

c
k

2
9

M
e

m
o

ry

Character String Data

p Character string data is concerned with representing the characters used in a natural language
internally in computer memory

7 Basically, the question is, how to represent the data from a keyboard in bit patterns

p This is done by what is called a "coding scheme": each character you want to represent is
assigned a particular pattern of bits

7 S/370 family machines use a coding scheme called "EBCDIC"
(Extended Binary Coded Decimal Interchange Code)

p Some sample EBCDIC character coding assignments:

Character Assigned to bit pattern

 '+' 01001110

 'a' 10000001

 ' ' 01000000 (Space, or Blank)

 'B' 11000010

 '4' 11110100

C
o

p
y rig

h
t ©

 2
0

2
4

 b
y S

te
 ve

n
 H

. C
o

m
s
to

c
k

3
0

M
e

m
o

ry

Character String Data, 2

p Note that not every possible bit pattern in 8 bits is assigned to a printable character

¨ For example:

00000000
00111101
10000000
11011010

p We talk about character string data because the hardware does not have any predetermined
length or maximum size for this kind of data:

7 You can string characters together as long as you like

C
o

p
y rig

h
t ©

 2
0

2
4

 b
y S

te
 ve

n
 H

. C
o

m
s
to

c
k

3
1

M
e

m
o

ry

HEXADECIMAL

p Because binary is difficult to read and write

p And because not all bit patterns represent printable characters

p We usually use Hexadecimal to represent the contents of memory

¨ A short-hand: one hex digit for each four bits (half-byte or nybble)

BINARY: 0011 1101 0100 1110 1000 0001 0100 0000 1100 0010 1111 0100

HEX A DEC I MAL: 3 | D 4 | E 8 | 1 4 | 0 C | 2 F | 4

CHARACTER: + a B 4

not a printable standard
character blank

HEXADECIMAL is number base 16 (HEX + DECIMAL = 6 + 10)

HEX BIN DEC
 0 0000 0
 1 0001 1
 2 0010 2
 3 0011 3
 4 0100 4
 5 0101 5
 6 0110 6
 7 0111 7
 8 1000 8
 9 1001 9
 A 1010 10
 B 1011 11
 C 1100 12
 D 1101 13
 E 1110 14
 F 1111 15

C
o

p
y rig

h
t ©

 2
0

2
4

 b
y S

te
 ve

n
 H

. C
o

m
s
to

c
k

3
2

H
e

x a
 d

e
c
 i m

a
l N

u
m

b
e

rs

A CPU and Memory (Main Storage)C
o

p
y rig

h
t ©

 2
0

2
4

 b
y S

te
 ve

n
 H

. C
o

m
s
to

c
k

3
3

C
P

U

Before a program can be executed (run), it must reside in
memory, so the CPU can access the instructions

Sometimes memory is called main storage

The heart of any computer is the Central Processing Unit (CPU)

The CPU is the component that actually fetches and executes the
instructions in a program

Sometimes a CPU is simply called a processor

Since unprivileged instructions may only access data in memory, these instructions must
specify, as their operands, locations in memory: the instructions point to the data

Memory Addressing

p Each byte of memory is numbered:

 0 1 2 3 4 5 6 7 8 9 10 ...

p The number which uniquely locates each byte of memory is called its address

¨ To reference the data at a memory location in an instruction, you specify (in the
instruction) the byte number, or address, of that memory location

¨ The CPU will then fetch the data at that location for processing, or use that location as the
target location for storing the result of an instruction

C
o

p
y rig

h
t ©

 2
0

2
4

 b
y S

te
 ve

n
 H

. C
o

m
s
to

c
k

3
4

A
d

d
re

s
s
in

g

Address Registers

p Instructions and data, then, are located in memory by their addresses

p The CPU contains several address registers it uses to hold memory addresses (point to
locations in memory)

¨ A register is a small scratch pad of memory in the CPU itself, often used for holding
addresses or data, and for doing calculations

7 Think of the display on a calculator:

7 Address registers are 32 bits long, but addresses are either 24 bits long or 31 bits long,
depending on the addressing mode currently being used by the CPU

C
o

p
y rig

h
t ©

 2
0

2
4

 b
y S

te
 ve

n
 H

. C
o

m
s
to

c
k

3
5

A
d

d
re

s
s
in

g

24-Bit Memory Addresses

p Here are some sample addresses when the CPU is using 24-bit addressing mode

Decimal Hex Binary

0 000000 0000 0000 0000 0000 0000 0000

1 000001 0000 0000 0000 0000 0000 0001

2 000002 0000 0000 0000 0000 0000 0010

3 000003 0000 0000 0000 0000 0000 0011

512 000200 0000 0000 0000 0010 0000 0000

1024 000400 0000 0000 0000 0100 0000 0000

2048 000800 0000 0000 0000 1000 0000 0000

4096 001000 0000 0000 0001 0000 0000 0000

8192 002000 0000 0000 0010 0000 0000 0000

1048576 100000 0001 0000 0000 0000 0000 0000

2097152 200000 0010 0000 0000 0000 0000 0000

16777213 FFFFFD 1111 1111 1111 1111 1111 1101

16777214 FFFFFE 1111 1111 1111 1111 1111 1110

16777215 FFFFFF 1111 1111 1111 1111 1111 1111

p Each address can fit in three bytes; in 24-bit addressing mode, the leftmost byte in an address
register is ignored

C
o

p
y rig

h
t ©

 2
0

2
4

 b
y S

te
 ve

n
 H

. C
o

m
s
to

c
k

3
6

A
d

d
re

s
s
in

g

31-Bit Memory Addresses

p Here are some sample addresses when the CPU is using 31-bit addressing mode

Decimal Hex Binary

0 00000000 x000 0000 0000 0000 0000 0000 0000 0000

1 00000001 x000 0000 0000 0000 0000 0000 0000 0001

2 00000002 x000 0000 0000 0000 0000 0000 0000 0010

3 00000003 x000 0000 0000 0000 0000 0000 0000 0011

4096 00001000 x000 0000 0000 0000 0001 0000 0000 0000

8192 00002000 x000 0000 0000 0000 0010 0000 0000 0000

1048576 00100000 x000 0000 0001 0000 0000 0000 0000 0000

2097152 00200000 x000 0000 0010 0000 0000 0000 0000 0000

16777215 00FFFFFF x000 0000 1111 1111 1111 1111 1111 1111

67108863 03FFFFFF x000 0011 1111 1111 1111 1111 1111 1111

1073741823 3FFFFFFF x011 1111 1111 1111 1111 1111 1111 1111

2147483647 7FFFFFFF x111 1111 1111 1111 1111 1111 1111 1111

p In 31-bit addressing mode, the leftmost bit in an address register is ignored

¨ The leading "x" indicates the bit is ignored for address calculations

C
o

p
y rig

h
t ©

 2
0

2
4

 b
y S

te
 ve

n
 H

. C
o

m
s
to

c
k

3
7

A
d

d
re

s
s
in

g

CPU, Registers, and Main StorageC
o

p
y rig

h
t ©

 2
0

2
4

 b
y S

te
 ve

n
 H

. C
o

m
s
to

c
k

3
8

A
d

d
re

s
s
in

g

flags cc IAR

 Current
Instruction

PSW A-Reg B-Reg

TOD Clock Clock Comparator

ü
ý GPR's
þ

0 1 2 3 4 5 6 7

FEDCBA98

Copy right ã 2024 by Ste ven H. Comstock 39 CPU Contents

Central Processing Unit (CPU) - pre-z/Architecture

CPU Contents

16 General Purpose Registers (GPRs)
+ Four bytes each, numbered 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
+ Used to hold addresses, integers, any data
+ Decimal range 0 to 4,294,967,295 as unsigned binary integer
+ Decimal range -2,417,483,648 to +2,417,483,647 as signed integer

16 Floating Point Registers (not shown)
+ Eight bytes each, work with data in "Hexadecimal floating point" (S/360)

format (also HFP) or in "binary floating point" (IEEE) format (also 'BFP')

16 Control Registers (not shown)
+ Four bytes each; each register serves some pre-defined purpose

16 Access Registers (not shown)
+ Four bytes each; used to access multiple address / data spaces

Flags: Status Information
+ Supervisor / Problem state
+ Wait / Executing state
+ ... other control states ...
Flags: Storage Protect Key
+ Controls fetch / store access to parts of memory
Condition Code
+ 2 bits, set when some instructions are executed, to indiate result of

operation
Addressing Mode Indicator
+ 1 bit, indicate 24-bit mode ('0') or 31-bit mode ('1')
Instruction Address Register (IAR)
+ Memory address of next instruction to be executed

Program Status Word

 (PSW)

Central Processing Unit (CPU), continued

Other Components
+ Instruction fetch / decode logic and registers

Get the current instruction, point to the next instruction,
determine instruction type of current instruction

+ Address calculation logic and registers (A-Reg and B-Reg)
Compute the address of operands in memory, if needed

+ Instruction execution logic
Perform the instruction

+ Interruption handling circutry
Save status when an interrupt occurs, branch to

interrupt handling routine

+ Clock and timers (TOD clock, Clock Comparator, CPU Timer)
For determining current date / time, allowing time intervals
to elapse, etc.

+ Vector facility
Includes registers and instruction to perform operations on

arrays of data simultaneously

+ Cryptographic facility
Provides encoding and decoding services

Notes

¨ The S/390 had only four floating point registers, designated 0, 2,
4, and 6

7 Current machines have 16 floating point registers; and the
registers can work with data in traditional IBM floating point format
(also called "hexadecimal floating point", HFP) or IEEE floating
point format (also called "binary floating point", BFP) or decimal
floating point (DFP)

Copy right ã 2024 by Ste ven H. Comstock 40 CPU Contents

Central Processing Unit (CPU), continued

p Over time, what was originally the IBM S/360 has gone through many
enhancements and changes to get to the point it is now at

7 For example, IBM mainframes did not always have Vector facilities
or Cryptographic facilities

¨ Although the core design has remained, new capabilities and new
instructions have been added

p In addition, the Assembler itself has gone through extensive
improvements

¨ Not just to support the new instructions (although, of course that
is included)

¨ But there's also been enhancements to support new features such
as labled USINGs and lots more

Copy right ã 2024 by Ste ven H. Comstock 41 CPU Contents

Computer Exercise: Setting Up For Hands On Lab Exercises

At this point, we'll take a little break from lecture to prepare for our later labs.

Using ISPF option 6, enter the following command

===> exec '__________.train.library(c510strt)' exec

and press <Enter>

This will cause the setup process to run. You will be prompted for a high level
qualifier for your data sets. Unless the instructor tells you otherwise, use your
TSO userid (the process is set up to use this as a default anyway). Press
<Enter>.

The setup process will create four libraries for you:

<hlq>.TR.CNTL - for JCL

<hlq>.TR.SOURCE - for your Assembler code

<hlq>.TR.LOAD - for load modules

<hlq>.TR.PDSE - for program objects
Note: some shops will omit the PDSE data set

where "<hlq>" is replaced by the high level qualifier you entered in response
to the setup's prompt.

The process also places some members you'll need for various machine
exercises in some of these libraries

Copy right ã 2024 by Ste ven H. Comstock 42 CPU Contents

Machine Instruction Formats

Fundamentals

p Here we do some more review to set the stage for what's coming

p The CPU expects to find instructions represented in a binary form:
the CPU does not recognize the word "ADD", for example, but it
recognizes a binary operation code that means "ADD" to it

p For those instructions where both operands are in memory, the
machine format expected by IBM mainframe computers is like this:

 Operation Data 1st Operand 2nd Operand
 Code Length Address Address

p Note that for some storage to storage instructions, the data length
byte actually has the first hex digit represent the length of the first
operand and the second hex digit represent the length of the second
operand

¨ In the other storage to storage instructions the data length byte is
a single number and the length applies to both operands

Copy right ã 2024 by Ste ven H. Comstock 43 Fundamentals

Operand Addresses

p Machine instructions do not contain operand addresses as 24-bit or
31-bit memory addresses

¨ The reason for this is that a program may be loaded into any
consecutive range of memory addresses when it is to be run
(executed)

¨ If operand addresses were stored as absolute memory locations,
you would need to re-Assemble a program every time it was to
execute from a different place in memory

p Instead, every program is expected to establish a Base Address
(starting address) in memory, and the location of operands is
specified by how many bytes away the operand is from this base
address

¨ This distance is called the Displacement

p Every time a program is loaded into memory, it finds out the address
it is loaded at and uses that value for the Base Address, and
operands are located relative to this starting point

¨ A machine instruction is used to place a memory address into a
General Purpose Register (GPR)

¨ This is how a program establishes its Base Address

Copy right ã 2024 by Ste ven H. Comstock 44 Fundamentals

Base / Displacement

p This way, no matter what address in memory a program is loaded at,
once you get that load address into a General Purpose Register, you
locate data items (or instructions) by specifying

¨ you are using that particular GPR as a Base Register

¨ and how many bytes of displacement should be used to calculate
the correct address for the data:

Base Register

 xx xx xx xx

 data-item-1 data-item-2

 ----- Displacement D1 ----->

 -------------------------Displacement D2 ----------------->

Program Load Address

Operand Address= Contents of Base Register + Displacement

= C(Base Reg) + Displacement

Copy right ã 2024 by Ste ven H. Comstock 45 Fundamentals

Memory

Operand Addresses, 2

p So, in a machine instruction that references a memory address, the
address is actually stored in Base / Displacement form, in two bytes:

¨ The first half-byte identifies which General Purpose Register is
being used as a Base Register (a hexadecimal digit 0-9 or A-F)

7 NOTE: if register 0 is used, a value of zero is used for the base,
not the contents of register 0

¨ The last three hex digits (one and a half bytes) specifies the
displacement to be used in locating the data item

 B D D D

 byte byte

p The range of values for the displacement is:

 000 - FFF in hexadecimal

or 0000 - 4095 in decimal

¨ In other words, a single base register can support a program up
to 4096 bytes (4K) long

¨ Larger programs require using two (or more) different GPRs for
base registers (discussed later), or breaking the program up into
subroutines

Copy right ã 2024 by Ste ven H. Comstock 46 Fundamentals

Instruction Formats

p There are several instruction formats from the original design (in all
cases, the opcode is the first byte of the instruction):

¨ Register-Register (RR): both operands are register numbers; the
insruction is 2 bytes in size; sometimes the 1st op. is a bit mask

OP R1R2 OP M1R2

¨ Register-Index (RX): 1st op. is a register, 2nd op. is a base,
displacement and index register; the value in the index register is
added to the second operand address to get the starting address;
instruction is 4 bytes long; sometimes the 1st op. is a bit mask

OP R1X2 B2D DD2 OP M1X2 B2D DD2

¨ Storage-Storage (SS): first and second operands are both of the
base+displacement form (so two bytes each); the second byte of
the instruction is either a single length code that applies to both
operands (so length from 0 to 255), or a half byte length for each
of the operands (so length from 0 to 15 for each); 6 bytes long

OP L1L2 B1D DD1 B2D DD2

or
OP L L1 B1D DD1 B2D DD2

¨ Storage-Immediate (SI); the first operand is one byte of data that
is actually the second operand; the first operand is a base and
displacement; four byte instruction

OP I I2 B1D DD1

p We study this because it will help later when we look more deeply at
z/Architecture

Copy right ã 2024 by Ste ven H. Comstock 47 Fundamentals

Instruction Formats, 2

p All instructions are two bytes, four bytes, or six bytes long; the
opcode tells the story in its first two bits:

first two bits instruction length
00 2 bytes
01 4 bytes
10 4 bytes
11 6 bytes

p The value x'00' will never be assigned as an operation code

p Additional instruction formats have been introduced at many points
along the way, and we'll discuss them as the opportunity arises

Copy right ã 2024 by Ste ven H. Comstock 48 Fundamentals

Machine Language

p The CPU only understands instructions expressed in binary (or, of
course, hex) in the form we've been looking at:

¨ operation code / data length / base-displacement memory
addresses

¨ This is called "machine language"

p In some instructions, one or more operands may be in registers, or
even included in the instruction itself

p Machine instructions in the S/360 and its successors are either two
bytes, four bytes, or six bytes long, depending on the instruction and
where the operands are located

¨ Instructions with operands in registers, for example, do not need
to contain memory addresses or data lengths

p Fortunately, we do not have to code in machine language to write
Assembler Language programs (although it is sometimes useful to
know how to interpret machine instructions in a memory dump)

Copy right ã 2024 by Ste ven H. Comstock 49 Fundamentals

Assembler Language

p Assembler Language is a computer programming language designed
to allow the programmer to specify a series of machine instructions

p This language has its own vocabulary, grammar, and rules of syntax

p Assembler Language simplifies coding machine instructions by:

¨ Allowing the use of mnemonics to specify an instruction, instead
of the hexadecimal or binary machine language representation

7 for example: write "MVC" for "move characters" instead of a
hexadecimal "D2"

¨ Allowing the use of symbols (names, labels) instead of forcing us
to keep track of base and displacements

7 the Assembler will determine the correct base and displacement
values, based upon information we supply

Copy right ã 2024 by Ste ven H. Comstock 50 Fundamentals

The Assembler

p The Assembler is a program already in executable form that converts
our Assembler Language source programs into actual machine code

¨ This course is based on the most recent version of the High Level
Assembler (HLASM)

7 Pointing out differences from earlier versions of Assemblers where
relevant

p The Assembler works with three kinds of statements:

¨ Machine Instructions: mnemonic representations of the machine
instructions we want our program to contain

7 Machine Instructions are converted one for one into actual
machine instructions in binary format

¨ Assembler Instructions: that tell the Assembler to do something
(allow room for data, start a new page on the listing, use a
particular register for a base, and so on)

7 Sometimes Assembler Instructions result in object code being
generated, but often these instructions simply give the Assembler
information

¨ Macro Instructions: IBM- (or user-) defined instructions; the
definitions, in turn, are composed of Machine, Assembler, and
other Macro Instructions

Copy right ã 2024 by Ste ven H. Comstock 51 Fundamentals

Program Development

p We use the following process when writing Assembler Language
programs:

¨ Code the program in Assembler Language, using a text editor
such as the ISPF/PDF editor

¨ Submit a job that invokes the Assembler to convert our source
code into object code and then invokes the Linkage Editor to
convert our object code into executable format (a load module)

7 This job can also test the resulting program (our approach in this
class), or you can set up a separate job to test the program

7 In some environments the invocation of the Linkage Editor is
replaced by using the Binder; the output can be a load module or
the newer program object

â This course was developed with preference to the Binder, but
all the labs will work if you use the Linkage Editor

p The following content is a review of classic Assembler program
structure mixed with current Assembler style

Copy right ã 2024 by Ste ven H. Comstock 52 Fundamentals

Assembler Rules and Conventions - V1R6 and later

Names (instruction labels and data labels)

¨ 1-63 characters from A-Z, 0-9, $, #, @, _ (underscore)

7 Lower case alpha (a-z) are supported as equivalent to upper case
alpha

7 First character must not be numeric

7 Names must be unique within a program

7 Earlier assemblers only supported upper case names with a
maximum of eight characters, and no underscores, $, #, or @

Coding Rules (columns 1 -71)

¨ Name, if present, begins in column 1

7 Followed by one or more blanks

¨ Operation Code (Machine, Assembler, or macro instruction)

7 Followed by one or more blanks

¨ Zero or more operands

7 If multiple operands, separated by commas, no extra spaces

7 Followed by one or more blanks

¨ Remarks / comments (optional)

¨ To continue a line, enter a non-blank character in column 72

7 The continuation line must have spaces in columns 1 - 15 then
the continuation text begins in column 16

Comment lines are coded with an asterisk (*) in column 1

Blank lines are allowed anywhere (not so in older Assemblers)

Copy right ã 2024 by Ste ven H. Comstock 53 Fundamentals

Control Sections

p Programs are organized into "chunks" of code (instructions and / or
data areas called Control Sections, or CSECTs)

p The beginning of a CSECT is indicated by the appearance of either a
START or CSECT Assembler instruction:

csectname START value

or

csectname CSECT

Notes

¨ The "csectname" must follow the rules for names in Assembler,
with the restriction that it may only be 8 characters long,
maximum

¨ There may only be one START statement in a source program;
there may be any number of CSECT statements (although in this
course we will normally have only one CSECT per program)

¨ "value" specifies a starting value for the Assembler's location
counter (default: 0) in decimal or hex

¨ Each time a new CSECT statement is encountered, the Assembler
sets that control sections's location counter to 0 (zero)

Copy right ã 2024 by Ste ven H. Comstock 54 Fundamentals

Assembler
Instructions

The Location Counter

p As the assembler processes your source code, generating machine
format instructions, it maintains an internal counter called the
"location counter" that contains the number of bytes of storage
assembled in the current CSECT so far

p The location counter starts out at zero for each CSECT, and as each
instruction is assembled, the location counter is incremented by the
size of the resulting machine instruction

p The location counter is used only during the Assembly process

p You can reference the location counter in an instruction operand by
coding an asterisk (*)

¨ The value is the address of the first byte of the instruction
containing the reference

¨ More on this later

Copy right ã 2024 by Ste ven H. Comstock 55 Fundamentals

Location Counter Example

 Location Source (storage size,
 Counter Instruction in bytes)

000000 MYPROG CSECT ---
000000 STM 14,12,12(13) (4)
000004 LR 12,15 (2)
000006 USING MYPROG,12 ---
000006 ST 13,SAVE+4 (4)
00000A LA 13,SAVE (4)
00000E ...

¨ "---" indicates an instruction does not generate any space in the
object module

p So we see that the CSECT instruction just indicates the beginning of
the control section and then,

¨ the STM instruction is at location 0 in the object module

¨ the LR instruction is at location 4 in the object module

¨ the USING instruction is an Assembler instruction that does not
take up any space in the object module

¨ the ST instruction begins at location 6

¨ the LA instruction begins at location 10 (decimal; 'A' in
hexadecimal)

¨ and so on ...

Copy right ã 2024 by Ste ven H. Comstock 56 Fundamentals

END

p A control section begins with a START or CSECT statement and
continues until ...

¨ A new CSECT is begun

¨ Or a DSECT is encountered

¨ Or an END statement is encountered:

 END [starting-location]

Notes

¨ The END statement must be the last statement in your program: it
denotes the end of the source module and any statements
following it are discarded

¨ "starting-location" represents where in the program execution
should begin when the program is actually run (the Entry Point)

7 The brackets ([]) around "starting-location" are typical IBM syntax
style, indicating an operand is optional (you never key in the
brackets)

7 The default "starting-location" is the first byte of the program

Copy right ã 2024 by Ste ven H. Comstock 57 Fundamentals

Assembler
Instruction

Program Structure, I

p So, the basic structure of Assembler programs is as follows:

MYPROG CSECT
 |
. |
 |
. the actual source code
 |
. |
 |
 END MYPROG

¨ In this example, "MYPROG" is the CSECT name (this is chosen by
the programmer, or by a standards convention in some
installations)

¨ Usually, this is also the name of the source library member that
contains the program as well as the name of the load library
member that contains the resulting load module

7 Although these conventions do not have to be followed, and in
some cases they can't be followed, we shall follow them in this
class

7 Thus, in the example above, you would edit member MYPROG in
your source library, typing in the lines above

Copy right ã 2024 by Ste ven H. Comstock 58 Fundamentals

Saving Registers

p In OS/390 and z/OS, every Assembler program must first save the
current General Purpose Register values into a save area provided by
the operating system

¨ This is because almost every program needs to use the GPRs, so
a convention has been established for saving and restoring
register values:

7 Every program will provide a save area for the registers, and the
address of this save area is placed into register 13

7 When a program invokes another program, the invoked program
will save the register values as received from the invoking
program in the invoking program's save area

â The invoked program will then provide its own save area so
that if it invokes another program that program will have a
place to save the calling program's register values

â This save area will be pointed at by register 13

â When a program returns to the program that invoked it, it must
first restore the registers as they existed on entry, so the
invoking program is guaranteed its register values are the
same as when it invoked the lower level program

¨ We discuss this in detail later, for now accept that our program
must first issue the machine instruction:

 STM 14,12,12(13)

Copy right ã 2024 by Ste ven H. Comstock 59 Fundamentals

Addressability

p The next thing to do in an assembler program is to establish
"addressability"; this requires two instructions:

¨ A machine instruction that will load a memory address into a
general purpose register; this establishes the base address

¨ An assembler instruction that will inform the Assembler that this
is the register that should be used as the base register for the
program, and from what point displacements should be calculated

7 Note that it is your responsibility, as the programmer, to make
sure the value in your base register is not "clobbered" by any
code you write later in the program

p Almost any GPR may be used, but a common convention (and one we
will follow in this class) is to use GPR 12 for the first base register for
a program

¨ So we have this kind of common convention:

R15: load address of module on entry
R14: return address to invoking program
R13: address of register save area
R12: first base register
...
R1: address of passed parameters
R0: varies

Copy right ã 2024 by Ste ven H. Comstock 60 Fundamentals

Addressability, Continued

p Several machine instructions exist for getting a memory address into
a register, but for now we shall use this one:

 LR 12,15

¨ This will place into register 12 the contents of register 15

¨ This takes advantage of the fact that in OS/390 and z/OS when a
program is invoked, the address the program has been loaded at
is placed into register 15 before passing control to the program

p To tell the Assembler how to calculate displacements, code:

 USING MYPROG,12

¨ This Assembler instruction says: use register 12 as the base
register, and calculate displacements from the beginning of the
CSECT named MYPROG

Copy right ã 2024 by Ste ven H. Comstock 61 Fundamentals

Providing a Save Area

p Following the convention mentioned earlier, the next thing an
Assembler program must do is to save the pointer to the save area
provided by the invoking program (the operating system in this case):

 ST 13,SAVE+4

p Then, the address of this program's save area must be placed into
register 13:

 LA 13,SAVE

p Now the Assembler program has completed following standard
"linkage conventions" for the OS/390 and z/OS environments

p But the program needs to contain a definition for the label "SAVE"
referenced in the two instructions above

¨ This is done by coding:

SAVE DC 18F'0'

¨ This Assembler instruction reserves memory for the save area

¨ 18 fullwords, or 72 bytes

¨ The instruction may be placed almost anywhere in the program,
but it is generally placed near the end of the program

Copy right ã 2024 by Ste ven H. Comstock 62 Fundamentals

Program Structure, II

p So, the basic structure of an Assembler program in the OS/390 and
z/OS environments, as far as we know now, looks like this:

MYPROG CSECT
 STM 14,12,12(13)
 LR 12,15
 USING MYPROG,12
 ST 13,SAVE+4
 LA 13,SAVE
. code the actual work beginning here
 |
. |
 |
. |
SAVE DC 18F'0'
 END MYPROG

p The only thing remaining for a general structure is: how to terminate
an Assembler program

Copy right ã 2024 by Ste ven H. Comstock 63 Fundamentals

Terminating An Assembler Program

p When a program has run to completion, it must perform three final
tasks:

¨ Restore the registers to their state before the program was run by
issuing these machine instructions

 L 13,SAVE+4
 LM 14,12,12(13)

¨ Place a return value in register 15 (the program that invoked this
program can thus get some feedback about how things went);
typically, a return code of zero is passed back by:

 SR 15,15

¨ And then return to the invoking program

 BR 14

7 Another OS/390 and z/OS convention: when a program is
invoked, register 14 contains the address to return to

7 This machine instruction branches to the address in register 14

p This completes the basic structure or "skeleton" of an Assembler
program designed to run in the OS/390 or z/OS environments

p The result of this structure is shown on the following page ...

Copy right ã 2024 by Ste ven H. Comstock 64 Fundamentals

Program Structure, III

p So this is the basic structure of an Assembler program in the OS/390
and z/OS environments:

MYPROG CSECT
 STM 14,12,12(13)
 LR 12,15
 USING MYPROG,12
 ST 13,SAVE+4
 LA 13,SAVE
 .
 .
 .
 L 13,SAVE+4
 LM 14,12,12(13)
 SR 15,15
 BR 14
SAVE DC 18F'0'
 END MYPROG

p We will discuss all these conventions and instructions in greater
detail during the course

¨ This provides you with the minimum amount of information to
code the initialization and termination routines in an Assembler
program

p Another thought along these lines: it would be a good idea to
comment the code, in order to simplify maintenance later ...

Copy right ã 2024 by Ste ven H. Comstock 65 Fundamentals

Program Structure, IV

p Commenting the code may be done in a variety of styles

¨ This is pretty basic

7 You may prefer your own style

7 Or your installation may have specific standards on comments

MYPROG CSECT
 STM 14,12,12(13) SAVE REGISTERS
 LR 12,15 ESTABLISH
 USING MYPROG,12 ADDRESSABILITY
* SAVE POINTER TO CALLING PROGRAMS REGISTERS
 ST 13,SAVE+4
* POINT TO OWN SAVE AREA
 LA 13,SAVE
**
 .
 .
 .
**
* PICK UP ADDRESS OF CALLING PROGRAMS SAVE AREA
 L 13,SAVE+4
 LM 14,12,12(13) RESTORE REGISTERS
 SR 15,15 RETURN CODE = 0
 BR 14 RETURN TO SYSTEM
**
*
* CONSTANTS AND DATA AREAS
*

SAVE DC 18F'0'
 END MYPROG

Copy right ã 2024 by Ste ven H. Comstock 66 Fundamentals

Copy right ã 2024 by Ste ven H. Comstock 67 Fundamentals

Program Structure, V

p Finally, a word about capitalization

¨ Labels, instructions, and operands may be coded in mixed case

¨ Remarks and comment lines may contain any EBCDIC character

¨ So comments might show up better if coded in upper and lower
case:

MYPROG CSECT
 STM 14,12,12(13) Save registers
 LR 12,15 Establish
 USING MYPROG,12 addressability
* Save pointer to calling programs registers
 ST 13,SAVE+4
* Point to own save area
 LA 13,SAVE
**
 .
 .
 .
**
* Pick up address of calling programs save area
 L 13,SAVE+4
 LM 14,12,12(13) Restore registers
 SR 15,15 Return code = 0
 BR 14 Return to system
**
*
* Constants and data areas
*

SAVE DC 18F'0'
 END MYPROG

¨ And, you may recall, z/OS provides two macros to help with this:
SAVE and RETURN ...

Copy right ã 2024 by Ste ven H. Comstock 68 Fundamentals

The SAVE Macro

Samples

 SAVE (14,12)

 SAVE (14,12),,'Entry to first routine'

 SAVE (14,12),,*

Working

¨ Generates the STM instruction of standard linkage conventions

¨ If third operand is specified, the macro generates a DC with the
constant and a branch around the constant

7 An asterisk (*) implies the constant to use is the name on the
SAVE macro; if no name on the SAVE macro use the name of the
current CSECT

¨ The second operand is intended for non-standard register saving

7 In particular, if you don't specify (14,12) in the first operand,
coding a 'T' in the second operand ensures registers 14 and 15
are saved in the appropriate place in the save area; for example:

SAVE (3,7),T

7 Not used much anymore, but you may see old code that uses this

Copy right ã 2024 by Ste ven H. Comstock 69 Fundamentals

The RETURN Macro

Samples

 RETURN (14,12)

 RETURN (14,12),,RC=n

 RETURN (14,12),,RC=OK

 RETURN (14,12),,RC=(15)

Working

¨ Generates the LM and BR instructions

7 But not the “L 13,4(13)”

¨ If RC= operand specified, the macro generates the code to place
return code in R15

7 'n' is an integer between 0 and 4095

7 'OK' is an example of using a symbol; 'OK' must be defined
something like this:

 OK EQU 12

7 If you code RC=(15), that says the return code is already in R15
and the RETURN macro generated code should not disturb it

â Only Register 15 may be used in this way

¨ Same remarks about the second operand as for SAVE

Copy right ã 2024 by Ste ven H. Comstock 70 Fundamentals

Standard Linkages Using SAVE and RETURN

p Applying these new macros yields:

MYPROG CSECT
 SAVE (14,12) Save registers
 LR 12,15 Establish
 USING MYPROG,12 addressability
* Save pointer to calling programs registers
 ST 13,SAVE+4 Store backward ptr
* Point to own save area
 LA 13,SAVE Establish own SA
**
 .
 .
 .
**
* Pick up address of calling programs save area
* and return to z/OS with a zero return code
 L 13,4(13)
 RETURN (14,12),,RC=0
**
*
* Constants and data areas
*

SAVE DC 18F'0'
 END MYPROG

p Many installations have their own home-grown linkage macros,
usually named something like INIT, EXIT, ENTER, LEAVE, and so on

¨ Typically they also have options for establishing multiple base
registers and other useful functions

¨ Find out what your installation uses if you're not sure

Copy right ã 2024 by Ste ven H. Comstock 71 Fundamentals

Computer Exercise: Assembling, Linking, Running

Now we have an opportunity to test our lab setup and prepare for later
exercises.

1. In your TR.SOURCE PDS is a member named ASMREPT

To give you some perspective, the program

* reads each record in an inventory file
* creates a print line and prints each record
* extracts information from the record and updates a table
* after the file has been read:

sort the table by category name and print the table in that order
sort the table by number of entries for each category

and print the table in that order

There is a listing of the program source in the Appendix to this book

2. To Assemble, bind, and run this program, use the procedure called
C510JOB1 in your TR.CNTL library. Submit this job and examine the
output from the Assembler, the binder, and the program itself.

The purpose of this exercise is to test the results of our setup and also to get
a working program to modify later.

