
Enterprise COBOL Debugging and Maintenance

The following terms that may appear in these course materials are trademarks or registered
trademarks:

Trademarks of the International Business Machines Corporation:

AIX, AS/400, BookManager, CICS, COBOL/370, COBOL for MVS and VM, COBOL for OS/390 &
VM, DATABASE 2, DB2, DB2 Universal Database, DFSMS, DFSMSds, DFSORT, IBM, IBMLink,
IMS, Language Environment, MQSeries, MVS, MVS/ESA, MVS/XA, NetView, NetView/PC, OS/400,
PR/SM, OpenEdition MVS, OS/2, OS/390, OS/400, Parallel Sysplex, QMF, RACF, RS/6000,
SOMobjects, System/360, System/370, System/390, S/360, S/370, S/390, System Object Model,
TSO, VisualAge, VisualLift, VTAM, WebSphere, z/OS, z/VM, z/Architecture, zSeries, z9

Trademarks of Microsoft Corp.: Microsoft, Windows, Windows NT, Visual Basic, Microsoft
Access, MS-DOS, Windows XP

Trademarks of Micro Focus Corp.: Micro Focus

Trademark of American National Standards Institute: ANSI

Trademarks of America Online, Inc.: America Online, AOL

Trademarks of Quercus Systems: Personal REXX, REXXTERM

Trademark of Chicago-Soft, Ltd: MVS/QuickRef

Trademark of Phoenix Software International: (E)JES

Trademark of Crystal Computer Services: Crystal Reports

Trademark of CA: Endevor

Trademark of Serena Software International: ChangeMan

Registered Trademarks of Institute of Electrical and Electronic Engineers: IEEE, POSIX

Registered Trademarks of Corel Corporation: Corel, CorelDRAW, Corel VENTURA

Registered Trademark of Oracle Corporation: Oracle

Registered Trademark of The Open Group: UNIX

Trademarks of Sun Microsystems, Inc.: Java, EmbeddedJava, Enterprise JavaBeans, EJB, Java
Naming and Directory Interface, JavaBeans, JavaOS, JavaScript, JavaServer, JavaServerPages,
JSP, JDBC, JDK, JVM, J2EE, Sun Microsystems, 100% Pure Java

Registered Trademark of Linus Torvalds: LINUX

Registered Trademark of Unicode, Inc.: Unicode

Trademarks held on behalf of World Wide Web Consortium: W3C, XHTML, XSL, WebFonts

Trademark of Object Management Group: CORBA

Trademarks of Apple Computer: QuickTime, Safari

Trademarks of Adobe Systems, Inc.: Macromedia, PDF, Shockwave, Flash

Trademark of The Eclipse Foundation: Eclipse

Enterprise COBOL Debugging and Maintenance - Course Objectives

On successful completion of this course, the student, with the aid of the
appropriate reference materials, should be able to:

1. Describe the general structure of the LE program management model

2. Describe the outputs of the IBM Enterprise COBOL compiler, and use these
outputs correctly in problem determination and dump debugging

3. Approach debugging in an orderly, efficient fashion

4. Locate data items from a COBOL program in an LE CEEDUMP

5. Better understand subroutines and parameters in a COBOL environment

6. Use the Program Binder to maintain load modules and program objects

7. Understand LE debugging facilities such as condition handling and the
CEE3DMP, CEE3ABD, and CEE2AB2 LE services

8. Use the appropriate COBOL compiler debugging techniques to assist in
tracking down and solving errors

9. Use appropriate Binder options and control statements, including creating a
program object with a segment below the line and a segment above the line.

1

D732 / 2 Days These Materials Copyright � 2012 by Steven H. Comstock V6.1

Enterprise COBOL Debugging and Maintenance - Topical Outline

Day One

Language Environment - An Introduction
What Is LE?
LE Conforming Programs
LE Services
Invoking LE Services
LE Program Management

Introduction to Debugging and Dump Reading
Computer Exercise: ONION debugging problem 18

Guidelines for Debugging
The School of Footprints and Breadcrumbs
Program Termination
Sources of Information

IBM Publications
Quick Reference

Messages and Clues
File Related Messages
Common System Completion Codes

Program Check error Codes
Common LE Completion Codes
Lab Time for ONION

Anatomy of a COBOL Compile Listing
Machine Instructions
Executable Programs

Lab Time for ONION

Dump Reading — Introduction
LE Dump Reading
Locating Data Items in an LE Dump
Common Errors to Watch For
Locating Index Information in a Dump
Locating Data in a Program's Linkage Section

2

D732 / 2 Days These Materials Copyright � 2012 by Steven H. Comstock V6.1

Enterprise COBOL Debugging and Maintenance - Topical Outline, p.2.

Day One, continued

How the COBOL compiler works .. 97
Data sets
Compiler Parms
PROCESS Statement

Day Two

Subroutines and parameters ... 129
CALL Syntax
Enhancements to Parameter Passing
Returning Values
Multiple ENTRY points

The Program Binder
Object Modules and Load Modules
CSECTs
Binder Control Statements and PARMs
Binder Processing
The Program Binder and Maintenance
Application Programming to get PARM Data

Computer Exercise: Program Binder and Maintenance 185

More About the Program Binder
Load Modules vs. Program Objects
Binder Parm's
Binder Inputs

LE Condition Handling
Condition Handling Concepts
Standard LE Processing for T_I_U and T_I_S

Dynamic CALL, CANCEL

3

D732 / 2 Days These Materials Copyright � 2012 by Steven H. Comstock V6.1

Enterprise COBOL Debugging and Maintenance - Topical Outline, p.3.

Day Two, continued

COBOL Source Debugging Techniques ... 221
Subscriptrange Checking
DISPLAY
DEBUGGING MODE (Compile Time Switch)
Declaratives
TEST and CEEDUMP
Runtime Options
Computer Exercise: Using TEST ... 238

LE Debugging Services
CEE3DMP, CEE3ABD, CEE3AB2, CEETEST

LE: The Run-Time Environment
Specifying run-time parameters
LE run-time parameters that apply to debugging or COBOL

Guidelines for Debugging - recap
The Larger Context

4

D732 / 2 Days These Materials Copyright � 2012 by Steven H. Comstock V6.1

LanguageEnvironmentOverview

Copyright � 2012 by Steven H. Comstock 5 Language Environment Overview

Section Preview

� Language Environment - An Introduction

� What is Language Environment?

� LE Conforming Programs

� LE Services

� Using LE Services

� Invoking LE Services

� The LE Run-Time Environment

� LE Program Management

What Is Language Environment?

� Language Environment (LE) is a set of programs that provide the
following capabilities

� A common run-time environment for many languages

� COBOL, PL/I, C/C++, Assembler, FORTRAN, Java

� A set of callable routines that provide useful services for
applications written using LE conforming compilers

� Date and time, storage management, mathematical, etc.

� LE is used to support z/OS UNIX System Services, also called,
more simply, z/OS UNIX

� Including support for Unix file structures (directories,
subdirectories, ... , files) and standard UNIX calls and services

� Initially, LE was an option of the operating system - now, LE comes
with the operating system and must always be available

Copyright � 2012 by Steven H. Comstock 6 Language Environment Overview

LE Conforming Programs

� A program is “LE conforming” if it establishes or runs under the LE
run-time environment and follows LE conventions

� Programs compiled using the compilers designed for the LE
environment are automatically LE conforming:

� IBM Enterprise COBOL for z/OS, COBOL for OS/390 & VM

� IBM Enterprise PL/I for z/OS, PL/I for MVS & VM

� XL C/C++, z/OS C/C++

� These compilers automatically generate dynamic calls to the
Language Environment initialization routines

� In fact, programs compiled and linked using these compilers
must run in the LE environment

� Of course, Assembler programs can also be written to invoke the LE
initialization routines, but the Assembler doesn't automatically
generate the linkages to these routines

Copyright � 2012 by Steven H. Comstock 7 Language Environment Overview

LE Services

� As an overview, the services available to Language Environment
conforming programs fall into the following categories

� Storage Management - obtain and free memory dynamically

� Condition Handling - detect errors and other conditions, and
handle conditions in a consistent manner

� Messaging Services - define message files that can be shared by
many programs; issue messages, including

� substituting variables, from programs;

� route messages to various target locations

� Date and Time Services - get and store date and time in various
formats; convert between formats

� Debugging Services - retrieve / set error codes; generate dumps;
invoke a debug tool

� Mathematical Services - Trigonometric functions; exponential
and logarithmic functions; etc.

� International Services - retrieve / set country, language, currency,
and similar attributes, including support for locales

Copyright � 2012 by Steven H. Comstock 8 Language Environment Overview

Using LE Services

� Language Environment services are accessed using CALL
statements (or CALL-like mechanisms, such as function references
in C/C++)

� All Language Environment services are subroutines

� All these subroutine names begin with “CEE”

� A program using Language Environment services must be compiled
using the appropriate compilers

� Just inserting CALLs to these services and then compiling with
an earlier compiler won't work because the service calls assume
the LE environment has been established

� However, note that non-LE conforming programs can run in the LE
environment (a COBOL II load module, for example, can be called by
an Enterprise COBOL main program)

Copyright � 2012 by Steven H. Comstock 9 Language Environment Overview

Invoking LE Services

� COBOL programs

� Standard CALL syntax applies to invoking services, for example

Call 'CEEMSG' using in-token, dest2, fc-token

� On return, check “fc-token”, not RETURN-CODE

� Calls may be either static or dynamic

� The fc-token field is a 12-byte field that returns detailed information
on how the request went

� Details beyond the scope of this course, but sufficient to:

� Set to low-values before requesting service

� Check for low-values after return from service

� If not still low-values then some kind of error occurred

Copyright � 2012 by Steven H. Comstock 10 Language Environment Overview

The LE Run-time Environment

� To understand debugging in the LE environment, there are a number
of issues we need to discuss

� The LE program management model

� Basically, LE hides the traditional MVS and z/OS program
management structure, introducing terms like Process, Enclave,
and Thread

� LE condition handling

� LE provides services available to the application programmer for
detecting and handling conditions

� And, if the user doesn't use these facilities, LE will

� LE Dumps

� The layout for, and information in, an LE dump is based on the
program management model and the condition handling facilities
of LE

� LE writes dumps to a data set with a DDname of CEEDUMP
instead of the Abend dump data set SYSUDUMP

� If you don't provide a CEEDUMP statement, LE will
dynamically allocate one if it needs to create a dump

� So we begin this part of our odyssey with a brief look at the LE
program management model ...

Copyright � 2012 by Steven H. Comstock 11 Language Environment Overview

LE Program Management

� Language Environment manages programs and resources using a
model that recognizes

� Thread - the execution of an application's program(s); think 'task'
in traditional z/OS terms

� Enclave - programs and storage used by one or more related
threads; an enclave consists of: a single main program, any
number of sub-programs (subroutines), and storage shared
among the programs; think 'run-unit'

� Process - one or more related enclaves and their shared
resources: a message file and the runtime library (for batch,
think: a logical chunk of an address space containing related
programs, data, and control blocks; for online programs, think:
transaction)

� When you run an LE main program (LE-conforming Assembler or
LE-compliant high level language compiler), LE initializes the
run-time environment (process) by initializing an enclave and an
initial thread

� Enclave initialization acquires an initial heap storage and
establishes the starting values of attributes such as the country
and language settings and the century window

� Thread initialization acquires a stack, enables a condition
manager, and launches the main program

� You can modify initialization by running a user exit

Copyright � 2012 by Steven H. Comstock 12 Language Environment Overview

LE Program Management, continued

� Let's examine this program management model a little more closely

� Start with the enclave: this is really the most familiar concept for
most programmers:

� A mainline and the subroutines it calls (including subroutines
called by subroutines, etc.)

� The subroutines may be called statically or dynamically

� An enclave

Copyright � 2012 by Steven H. Comstock 13 Language Environment Overview

move

.

.

move

.

.

add

.

.

perform

.

.

call

.

.

if ...

.

.

compute

.

.

move

.

.

compute

.

.

goback

move

.

.

move

.

.

compute

.

.

call

.

.

compute

.

.

goback

move

.

.

move

.

.

compute

.

.

compute

.

.

goback

LE Program Management, continued

� Now, as the program executes, if we could trace its progress we
might see a line of execution something like this:

� This line of instruction execution is called a thread

� Note that although there are three programs here, there is a
single thread

Copyright � 2012 by Steven H. Comstock 14 Language Environment Overview

move

.

.

move

.

.

add

.

.

perform

.

.

call

.

.

if ...

.

.

compute

.

.

move

.

.

compute

.

.

goback

move

.

.

move

.

.

compute

.

.

call

.

.

compute

.

.

goback

move

.

.

move

.

.

compute

.

.

compute

.

.

goback

LE Program Management, continued

� Finally, the overall umbrella in LE is the Process

� Consists of: one or more enclaves and process level resources

� There are currently no LE-supplied services for creating multiple
enclaves in a process, but some CICS processes and some
Assembler processes can create multiple enclaves in a process
using non-LE services

� A process can create other processes, although processes are
independent of one another (no hierarchical relationships)

� The resources managed at the process level, include

� Message file

� The Language Environment run-time library

Copyright � 2012 by Steven H. Comstock 15 Language Environment Overview

LE Program Management, concluded

� Diagramatically, here's how the pieces fit together in the LE program
management model:

Copyright � 2012 by Steven H. Comstock 16 Language Environment Overview

sub sub

subsub

external (shared) data

enclave enclave

process

� Notes

� This represents the full model, which is not all
implemented in the current version of z/OS

� We'll see single process, single enclave, single thread

main

settings

LE runtime library

settings

thread

* stack storage
* condition

manager

thread

main . . .

external (shared) data

* stack storage
* condition

manager

thread

* stack storage
* condition

manager

message file (SYSOUT) and other shareable data

heap storageheap storage

DebuggingandDumpReading

Copyright � 2012 by Steven H. Comstock 17 Debugging and Dump Reading

Section Preview

� Debugging and Dump Reading

� Onion (Machine Exercise)

� Guidelines for Debugging

� Sources of Information

� Messages and Clues

� Anatomy of a COBOL Compile Listing

� Machine Instructions

� Executable Programs

� LE Dump Reading

� Common Errors To Watch For

� Lab Time for ONION

Computer Exercise: ONION

Debugging

This is a special debugging exercise. Each individual or team will work with a
copy of the program called ONION (real name: ONIONLCO).

To get going, you need to run a little dialog that will create files for you to
use during the labs. From ISPF option 6, enter the following command:

===> ex '________.train.library(d732strt)' exec

This will prompt you for a high level qualifier to use for your libraries, set up
with a default of your TSO id; if this is good (and it usually is), just press
<Enter>. The dialog then will create three libraries:

<hlq>.TR.COBOL - for your source code; contains ONIONLCO

<hlq>.TR.CNTL - for your JCL; contains several members

<hlq>.TR.LOAD - where programs are compiled into

Next, you need to run a couple of jobs from your TR.CNTL library, in
preparation for our dump reading lectures. First submit member DUMPST3;
this job compiles and binds a subroutine named XLINESE9; after this job
completes, then submit member DUMPST4; this job compiles and binds the
mainline named SUB3TST; this job also runs the resulting load module,
which abends with a S0C7 code. We will be viewing both these jobs later, so
save the jobnames and JOBIDs of these two jobs.

Now you are ready to get the debugging program, ONION, started...

Copyright � 2012 by Steven H. Comstock 18 Debugging

Computer Exercise: ONION, continued

ONION is designed to blow up. Each time you get a dump, or other unusual
termination, you are to use all your debugging skills to identify the precise
cause of the failure and to suggest your approach to solve the problem.

Use member D732RUN1 in your TR.CNTL library to compile, bind, and run
ONION. You can begin debugging any time you like.

Before submitting your proposed change(s) for another run, talk to the
instructor. You must modify the current version just enough to correct the
current error. This is because the program will reveal a new error after you
fix the current one, until a total of ten or twelve errors have been corrected.

The current source code for ONIONLCO is found in the Appendix, along
with the expected results, so you'll know when you're done.

An essential part of debugging is understanding what a program is designed
to accomplish. On the next page is a brief description of ONION's
functionality.

Copyright � 2012 by Steven H. Comstock 19 Debugging

Computer Exercise: ONION, continued

Notes:

ONION reads an inventory file (INPUTA) and writes a report that lists each
item. After reading all of the inventory file, ONION CALLs a module,
INDXHD4 (the supplied JCL will automatically pick up this program at link
time).

INDXHD4 was written by Peter Programmer, who is no longer with us. We
can't seem to find the source of this program, and the only documentation we
can locate is a cryptic note on the blotter Peter had on his desk: "INDXHD4:
called passing request code ('T' for title line, 'D' for detail line), printarea,
current table category, and current table category-count".

Anyway, INDXHD4 has never failed, so we're confident it is not the source of
any errors.

The record layout for the input file is shown below:

INPUTA Record Layout

Positions Data

1 - 9 Part number; character

10 - 39 Description; character

40 - 44 Reserved; random character string

45 - 48 Unit Price; packed decimal: 9999V999

49 - 51 Quantity on hand; packed decimal: 99999

52 - 52 Reserved

53 - 54 Quantity on order; binary halfword; 999

55 - 56 Reorder level (also used as reorder quantity); binary halfword; 999

57 - 57 Switch; random bit string

58 - 66 Old Part Number; character

67 - 67 Reserved

68 - 77 Item Category; character

78 - 100 Reserved

Copyright � 2012 by Steven H. Comstock 20 Debugging

