
Enterprise COBOL Unicode and XML Support

The following terms that may appear in these course materials are trademarks or registered
trademarks:

Trademarks of the International Business Machines Corporation:

AIX, BookManager,CICS, DB2, DRDA, DS8000, ESCON, FICON, HiperSockets, IBM, ibm.com, IMS,
Language Environment, MQSeries, MVS, NetView, OS/400, POWER7, PR/SM, Processor Resource
/ Systems Manager, OS/390, OS/400, Parallel Sysplex, QMF, RACF, Redbooks, RMF, RS/6000,
SOMobjects, S/390, System z, System z9, System z10, VisualAge, VTAM, WebSphere, z/OS, z/VM,
z/VSE, z/Architecture, zEnterprise, zSeries, z9, z10

Trademarks of Microsoft Corp.: Microsoft, Windows

Trademarks of Micro Focus Corp.: Micro Focus

Trademark of American National Standards Institute: ANSI

Trademarks of America Online, Inc.: America Online, AOL

Trademarks of Quercus Systems: Personal REXX, REXXTERM

Trademark of Chicago-Soft, Ltd: MVS/QuickRef

Trademark of Phoenix Software International: (E)JES

Trademark of Triangle Systems: IOF

Trademarl of Syncsort Corp.: SyncSort

Trademark of CA: Endevor

Trademark of Serena Software International: ChangeMan

Registered Trademarks of Institute of Electrical and Electronic Engineers: IEEE, POSIX

Registered Trademarks of Corel Corporation: Corel, CorelDRAW, Corel VENTURA

Registered Trademark of Oracle Corporation: Oracle

Registered Trademark of The Open Group: UNIX

Trademarks of Sun Microsystems, Inc.: Java, EmbeddedJava, Enterprise JavaBeans, EJB, Java
Naming and Directory Interface, JavaBeans, JavaOS, JavaScript, JavaServer, JavaServerPages,
JSP, JDBC, JDK, JVM, J2EE, Sun Microsystems, 100% Pure Java

Registered Trademark of Linus Torvalds: LINUX

Registered Trademark of Unicode, Inc.: Unicode

Trademarks held on behalf of World Wide Web Consortium: W3C, XHTML, XSL, WebFonts

Trademark of Object Management Group: CORBA

Trademarks of Apple Computer: QuickTime, Safari

Trademarks of Adobe Systems, Inc.: Macromedia, PDF, Shockwave, Flash

Trademark of The Eclipse Foundation: Eclipse

Enterprise COBOL Unicode and XML Support - Course Objectives

On successful completion of this class, the student, with the aid of the
appropriate reference materials, should be able to:

1. Describe the attributes of Unicode, and explain the difference between
the three formats of Unicode data (UTF-8, UTF-16, UTF-32)

2. Code Unicode data items, Unicode literals, and Unicode hex literals in a
COBOL program

3. Use intrinsic functions to convert between code pages including EBCDIC,
ASCII, and Unicode

4. Describe the basic rules for XML document structure

5. Invoke the IBM high speed XML parser from a COBOL program to extract
data from an XML document into a COBOL record structure

6. Use the XML GENERATE statement to create XML data from a COBOL
data structure

7. Use Enterprise COBOL 4.1 or later facilities to work with namespaces and
attributes, and to parse XML documents a record or a segment at a time

8. Use Enterprise COBOL 4.2 or later to validate an XML document against
a schema stored in an external file or an internal data item.

1

D705 / 2 Days These Materials Copyright � 2013 by Steven H. Comstock V10.4

Enterprise COBOL Unicode and XML Support - Topical Outline

Day One

COBOL Support For Unicode
What Is Unicode?
Unicode Support in Enterprise COBOL
When Will You Need To Use Unicode Support?
Things To Watch Out For
Computer Exercise: Set Up and Handling Unicode 34

COBOL Support for XML: The Set Up
What is XML?
Processing XML Documents
Preparing to Use the COBOL XML Parser
Computer Exercise: Prepare Data for Parsing ... 67

COBOL Support for XML: XML PARSE
The XML PARSE Statement
The XML Special Registers
The XML Events
Coding the Processing Procedure
Computer Exercise: Basic XML Parsing .. 86

COBOL Support for XML: Processing Procedure Considerations
What To Do In A Processing Procedure
Extracting Data During Parsing
Computer Exercise: Extracting Data During Parsing 101

Extracting Data During Parsing, continued
Computer Exercise: Extracting Multiple Data Fields During Parsing 114

Day Two

Extracting Numeric Data During Parsing
Early Termination of Parse
Exceptions in Parsing
Restrictions in Processing Procedures
Computer Exercise: Extracting Numeric Data During Parsing 125

2

D705 / 2 Days These Materials Copyright � 2013 by Steven H. Comstock V10.4

Enterprise COBOL Unicode and XML Support - Topical Outline, 2

Day Two, continued

COBOL support for XML: Generating XML output from a COBOL structure
The "Wrapper" paradigm
The XML GENERATE statement
XML GENERATE and exceptions
Computer Exercise: Creating XML Output ... 147

Parsing Pure Passed XML

Attributes, Namespaces, and Enterprise COBOL V4 Enhancements
COBOL, XML, and Attributes
COBOL, XML, and Namespaces
Enterprise COBOL V4 Enhancements

Compiler option XMLPARSE
Namespace support
Attributes in generation
Record level processing
XML header generation

Computer Exercise: Using Some of the New Features 173

XMLPARSE(XMLSS) Differences
Processing Differences for XML PARSE
XML PARSE migration issues

Enterprise COBOL V4R1 Processing Differences for XML GENERATE
Computer Exercise: Code clean up ... 182

Enterprise COBOL V4R2 Enhancements
Introduction to XML Schemas
Preparing XML Schemas for PARSE
XML PARSE ... VALIDATING
Computer Exercise: Schemas and Validation .. 207

Acknowledgement: Special thanks to Tom Ross and Nick Tindall of IBM for
their invaluable assistance.

3

D705 / 2 Days These Materials Copyright � 2013 by Steven H. Comstock V10.4

This page intentionally left almost blank.

4

D705 / 2 Days These Materials Copyright � 2013 by Steven H. Comstock V10.4

Unicode

Copyright � 2013 by Steven H. Comstock 5 Unicode

Section Preview

� COBOL Support For Unicode

� What is Unicode?

� Unicode Support in Enterprise COBOL

� When Will You Need To Use Unicode Support?

� Things To Watch Out For

� Set Up and Handling Unicode (Machine Exercise)

What Is Unicode?

� Unicode is a character encoding scheme designed to support all
characters in all human written languages

� Theoretically eliminating issues when trying to include characters
from multiple languages on a single web page or other document

� Think: "Universal codepage"

� The details are way beyond the scope of this discussion; however some
good background information can be found at these locations on the
Web:

� The Unicode Consortium home page has the standards

� http://www.unicode.org

� IBM has a site discussing its support of Unicode

� http://www.ibm.com/developerworks/webservices/library/ws-codepages

Copyright � 2013 by Steven H. Comstock 6 Unicode

What Is Unicode?, continued

� Unicode character string data is encoded in one of three ways

� UTF-32 - every character is represented by a 32-bit integer
(actually, only the rightmost 21 bits are used): four bytes per
character

� UTF-16 - most characters are represented by a 16-bit pattern (two
bytes)

� However, some characters are represented by a pair of 16-bit
patterns (total of four bytes) called surrogate pairs

� The Enterprise COBOL compiler does not recognize surrogate
pairs as such

� For example, if a surrogate pair is found in a National string,
COBOL will count the length as two Unicode characters
instead of one

� There is a variation of UTF-16 called "UTF-16LE" (LE for Little
Endian: bytes are stored least-significant first); COBOL does not
support this format

� Some UTF-16 data begins with a pattern called a Byte Order
Mark (BOM) that indicates if the data is big endian or little
endian; COBOL does not support this, either

� UTF-8 - each Unicode character is represented by one, two,
three, or four bytes, depending on the character

� The one-byte codes are essentially the basic ASCII characters,
so in a sense most ASCII character strings are UTF-8

� UTF stands for Unicode Transformation Format

Copyright � 2013 by Steven H. Comstock 7 Unicode

What Is Unicode?, continued

� The general Unicode code points for UTF-32 are listed in an
Appendix of this handout, for background information only

� We care about Unicode because Java, XML, and many other
Web-related technologies require Unicode support - and we care
about these technologies

� The mainframe hardware instruction set has been enhanced to
provide some Unicode support

� Now COBOL on the mainframe supports Unicode

� As does PL/I, C, and, of course, Assembler

Copyright � 2013 by Steven H. Comstock 8 Unicode

Unicode Support in Enterprise COBOL

� First, as background, you need to know that before Unicode became
widely adopted IBM was pushing the envelope by supporting its own
standard, DBCS - Double Byte Character Set

� The need to support Japanese and other Asian languages drove
the development of this in the 1980's

� Most IBM-supported programming languages support DBCS

� DBCS data may be embedded in classic, single byte data by
providing shift-in (X'0E') and shift-out (X'0F') characters around
the DBCS string

� In COBOL, a PICTURE clause that includes G or N picture
characters is considered to be DBCS character data

� With the advent of Unicode, DBCS support needs to be carried
forward while at the same time adding support for Unicode

� Ultimately, DBCS will probably fade away

� But IBM does not want to break existing code that relies on
DBCS handling (there's a lot of it out there)

� Single byte EBCDIC and, in some instances, DBCS can be used for
forming COBOL words, literals, picture strings and comments

� But the compiler cannot compile source code written in ASCII or
Unicode

Copyright � 2013 by Steven H. Comstock 9 Unicode

Unicode Support in Enterprise COBOL, 2

� This compiler uses the term National to describe data coded in
UTF-16

� A data item described as having USAGE NATIONAL will be
assumed to require two bytes for every character in the
corresponding PIC clause

� The PICTURE character to use is N

� However, N is also sometimes used for DBCS data, as is G

� If a data item is declared with no USAGE clause and the picture
clause uses N's, it is ambiguous: is the data Unicode or DBCS?

� A compiler option is provided to remove ambiguity:

NSYMBOL({DBCS|NATIONAL})

� Note that using a PICTURE character of G is always
unambiguous: it always represents DBCS data (sometimes called
Graphic data)

� There is another compiler option: {DBCS | NODBCS} where
DBCS means the compiler should recognize shift-in and shift-out
characters

� Setting NSYMBOL(NATIONAL) forces DBCS to be set also; and
in V3R4 of the compiler, the supplied default is DBCS

Copyright � 2013 by Steven H. Comstock 10 Unicode

Unicode Support in Enterprise COBOL, 3

� Data can, of course, be read into a National data item

� You may also code National literals: bound a string of characters
using N'...' or n'...' or N"..." or n"..."

� National literals may be used wherever a Display literal may be
used:

� In a VALUE clause, for a National data item or National
conditional value (level 88 item on an item of type National)

� In the figurative constant ALL (e.g.: ALL N"*")

� In a relation condition (e.g.: if last-name = n'�����' ...)

� In the WHEN clause of a binary SEARCH

� In the ALL, LEADING, FIRST, BEFORE, or AFTER phrases of
INSPECT

� In the DELIMITED BY phrase of STRING and UNSTRING

� In DISPLAY and EVALUATE statements

� As an argument for CALL … BY CONTENT, CALL … BY
VALUE, INVOKE … BY VALUE

� In method names

� In the argument list to these intrinsic functions: DISPLAY-OF,
LENGTH, LOWER-CASE, MAX, MIN, ORD-MAX, ORD-MIN,
REVERSE, UPPER-CASE

� In compiler-directing statements COPY, REPLACE, TITLE

� As a sending item in INITIALIZE, INSPECT, MOVE, STRING,
UNSTRING

Copyright � 2013 by Steven H. Comstock 11 Unicode

Unicode Support in Enterprise COBOL, 4

� Maximum length of a National literal is 80 characters (160 bytes)

� Now, suppose you used a National literal for a data item

� For example:

01 Book-gr national pic n(6) value n'������'.

� Of course, you might have those Greek characters available
while coding using English characters, but most likely not

� How to interpret the resulting bit patterns from the characters you
key in is dependent on the codepage in effect when you key in
the program

� You can tell the compiler what codepage you're using through
another compiler option, CODEPAGE:

CODEPAGE(ccsid_#)

� ccsid_# is a numbered EBCDIC code page (Coded Character
Set IDentifier)

� The default is 1140 which is Latin-1 with the Euro symbol; some
other values are listed on the following page

� IBM has a web site with links to pdf files describing all their
supported code pages (mind the wrap):

http://www.ibm.com/servers/eserver/iseries/software/

globalization/codepages.html

Copyright � 2013 by Steven H. Comstock 12 Unicode

Unicode Support in Enterprise COBOL, 5

� There are hundreds of CCSID values to choose from; some common
samples:

� 37 - Latin-1 (EBCDIC)

� 500 - International Latin-1 (EBCDIC)

� 819 - ASCII

� 1047 - Latin 1/Open Systems (EBCDIC)

� 1140 - Latin-1 w/ Euro (EBCDIC)

� 1143 - Finland, Sweden (EBCDIC)

� Note that code page 1200 is UTF-16 and 1208 is UTF-8 (you
cannot specify these in the CODEPAGE compiler option, but you
may use them in some of the intrinsic functions that support
codepage conversions)

� In any case, you certainly won't be able to do this:

01 Book-jp national pic n(1) value n' '.

� To key in values not in the codepage you're using, you must use
National hexadecimal literals

� NX"..." or NX' ... ', where the N and the X may be any case and
the contents in the quotes must be the hex string representing
the Unicode character you want

� Instead of the above code, you need something like this:

01 Book-jp national pic n(1) value nx'672C'.

Copyright � 2013 by Steven H. Comstock 13 Unicode

Unicode Support in Enterprise COBOL, 6

� Here are some small strings of characters and their corresponding
representations in various code pages (top line is character string,
all other values are hex):

character string: Here is data

EBCDIC*: C88599854089A2408481A381

ASCII / UTF-8: 486572652069732064617461

UTF-16:
004800650072006500200069007300200064006100740061

* - note that all EBCDIC code pages encode English
alpha-numeric characters, and many punctuation
characters, the same

� There are 13 EBCDIC characters that vary across EBCDIC
character map codepages but that must always be defined when
using locale settings; here are some sample mappings:

character: [] { } ! \ ^ ~ ` $ | @ #

EBCDIC 1140: BA BB C0 D0 5A E0 B0 A1 79 5B 4F 7C 7B

EBCDIC 500: 4A 5A C0 D0 4F E0 5F A1 79 5B BB 7C 7B

EBCDIC 1047: AD BD C0 D0 5A E0 5F A1 79 5B 4F 7C 7B

EBCDIC 1143 B5 9F 43 47 4F 71 5F DC 51 67 BB EC 63

ASCII / UTF-8: 5B 5D 7B 7D 21 5C 5E 7E 60 24 7C 40 23

UTF-16:[] { } ! \ ^ ~ ` $ | @ #
005B005D007B007D0021005C005E007E00600024007C00400023

Copyright � 2013 by Steven H. Comstock 14 Unicode

Unicode Support in Enterprise COBOL, 7

� The compiler provides additional Unicode support as follows

� A MOVE from a DISPLAY item to a NATIONAL item will cause
conversion from EBCDIC to UTF-16 automatically

� As usual, left justify and right truncate or pad; truncation is on
two-byte units; padding is done with UTF-16 spaces (nx'0020')

� Note: you are not allowed to MOVE a National item to a Display
item (but see related intrinsic functions later)

� Numeric integer (data items or literals) may be assigned to
NATIONAL items and will be converted to Unicode numeric
characters

� When reference modification is used for items defined as
NATIONAL, both the starting location and length values
represent the number of character positions, not the number of
bytes

� Note that support for UTF-16 does not pay attention to surrogate
pairs as such; that is, although a surrogate pair takes four bytes
to represent one Unicode character, COBOL interprets a
surrogate pair as two character positions

� The programmer is responsible for ensuring a surrogate pair is
not split inappropriately

Copyright � 2013 by Steven H. Comstock 15 Unicode

Unicode Support in Enterprise COBOL, 8

� The compiler provides additional Unicode support as follows

� If a NATIONAL item or literal is compared to alphanumeric,
display, DBCS, or numeric integer, the non-Unicode data is
converted to UTF-16 for the comparison

� Note that comparisons are strictly binary, not cultural

� That is, comparisons are simply done on the bit patterns, which
may or may not be how the language would relate two items

� For example, the character Ä collates after 'z'in Swedish,
but after 'a'in German

� To get cultural compares, you must use LE locale services

� The RECORD KEY clause for VSAM KSDS files may be a
NATIONAL data item

� As may the ALTERNATE RECORD KEY (for alternate index
support)

� The FILE STATUS data item for any file may be NATIONAL
category

Copyright � 2013 by Steven H. Comstock 16 Unicode

Unicode Support in Enterprise COBOL, 9

� The compiler provides additional Unicode support as follows

� Figurative Constants, when used with National items…

� ZERO, ZEROS, ZEROES - one or more National zeros are used
(NX'0030')

� SPACE, SPACES - one or more National spaces are used
(NX'0020')

� HIGH-VALUE, HIGH-VALUES, LOW-VALUE, LOW-VALUES -
generate NX'FFFF' and NX'0000' as you might expect (not
supported until V3R4)

� Note: do not mix DISPLAY and NATIONAL (Unicode)
versions of these figurative constants (e.g., comparisons,
moves, etc.; this will cause conversion and surprising
substitutions)

� QUOTE, QUOTES - use one or more National quotes (NX'0022')
or National apostrophes (NX'0027'), depending on the setting of
the compiler option {QUOTE|APOST}

Copyright � 2013 by Steven H. Comstock 17 Unicode

Unicode Support in Enterprise COBOL, 10

� The compiler provides additional Unicode support as follows

� When a National item is DISPLAYed to the console, it is
automatically translated from UTF-16 to EBCDIC using the
codepage option at compile time

� If displayed to SYSOUT (the default) no conversion is done

� To force conversion, use the DISPLAY-OF function

� When data is ACCEPTed from the console into a National item, it
is automatically converted from EBCDIC, using the compile time
CODEPAGE setting, to UTF-16

� If accepted from a file (say, SYSIN, the default) no conversion is
done

� Note that if any literal or identifier in a STRING, UNSTRING, or
INSPECT statement is National than all literals and identifiers in
that statement must be National items

� If the TALLYING option is used for INSPECT or UNSTRING, the
value returned is the number of 2-byte encoding units

� If the POINTER option is used for STRING or UNSTRING, the
value returned or used represents the number of 2-byte encoding
units offset from the start

� The COBOL SORT and MERGE verbs can use National data
items for the sort / merge key fields

Copyright � 2013 by Steven H. Comstock 18 Unicode

Unicode Support in Enterprise COBOL, 11

� The compiler provides additional Unicode support as follows

� Two intrinsic functions support explicit conversion between
Unicode and another codepage:

� DISPLAY-OF(national-item [[,]ccsid]) - given UTF-16 data in,
returns EBCDIC, ASCII, or UTF-8 data out, using the codepage
indicated by ccsid

� For example, UTF-16 to EBCDIC:

move function display-of(in-str, 1047) to out-str

will move contents of in-str, say:
004800650072006500200069007300200064006100740061

and convert into out-str:
C88599854089A2408481A381

� And UTF-16 to ASCII:

move function display-of(in-str, 819) to out-str

will move in-str:
004800650072006500200069007300200064006100740061

and convert into out-str:
486572652069732064617461

Copyright � 2013 by Steven H. Comstock 19 Unicode

Unicode Support in Enterprise COBOL, 12

� The compiler provides additional Unicode support as follows,
continued

� Two intrinsic functions support explicit conversion between
Unicode and another codepage, continued:

� NATIONAL-OF(display-item [[,]ccsid]) - given EBCDIC, ASCII, or
UTF-8 data in (as indicated by ccsid), returns UTF-16 data out

� For example, EBCDIC 1047 to UTF-16:

move function national-of(desc, 1047) to out-desc

will move the contents of desc, say:

C88599854089A2408481A381

and convert it into UTF-16 in out-desc:

004800650072006500200069007300200064006100740061

� For both functions, the default ccsid is that specified in the
CODEPAGE compiler option

� Which must represent an EBCDIC code page

� The NUMVAL and NUMVAL-C intrinsic functions can take National
data in their arguments

Copyright � 2013 by Steven H. Comstock 20 Unicode

Unicode Support in Enterprise COBOL, 13

Converting data to / from Unicode

01 Uni-data pic N(20) national.
01 Ebcdic-data pic X(20).
01 U8 pic X(20).
01 DBCS-data pic G(20) display-1.
.
.
.

� move Ebcdic-data to Uni-data
� move function National-of(Ebcdic-data) to Uni-data

� move function National-of (U8, 1208) to Uni-data
� move function National-of (DBCS-data, 1399)

to Uni-data

� move function Display-of(Uni-data) to Ebcdic-data
� move function display-of(Uni-data, 1208) to U8
� move function display-of(Uni-data, 1399)

to DBCS-data

� Notes

� Statements � and � both do the same thing: copy data from
Ebcdic-data into Uni-data, converting it to UTF-16 based on the
current codepage setting

� Statement � converts UTF-8 data to UTF-16, placing it into
Uni-data

� Statement � converts Japanese EBCDIC data (CCSID 1399) to
UTF-16, placing the result into Uni-data

� Statement 	 converts UTF-16 in Uni-data to EBCDIC

� Statement
 converts UTF-16 in Uni-data to UTF-8 in U8

� Statement � converts UTF-16 in Uni-data to Japanese EBCDIC
in DBCS-data

Copyright � 2013 by Steven H. Comstock 21 Unicode

Unicode Support in Enterprise COBOL, 14

Converting between EBCDIC and ASCII

01 EBCDIC-CCSID pic 9(4) binary value 1140.
01 ASCII-CCSID pic 9(4) binary value 819.

01 Uni-data pic N(80) national.
01 Ebcdic-data pic X(80).
01 ASCII-data pic X(80).
.
.
.

� move function National-of(Ebcdic-data, EBCDIC-CCSID)
to Uni-data

move function Display-of(Uni-data, ASCII-CCSID)
to ASCII-data

� move function Display-of
(function National-of
(Ebcdic-data, EBCDIC-CCSID)), ASCII-CCSID)
to ASCII-data

� The two statements at � are equivalent to the single statement at
�

� The reverse process also works

� Note that it is probably faster to just use INSPECT …
CONVERTING

� The compiler provides additional Unicode support as follows

� The LENGTH intrinsic function of a National data item returns the
length of the item in National characters

� The LENGTH OF special register of a National data item returns
the length of the item in bytes

Copyright � 2013 by Steven H. Comstock 22 Unicode

Unicode Support in Enterprise COBOL, 15

� Enterprise COBOL V3R4 expanded UNICODE support further, to
solve some problems that existed in earlier versions and to come
closer to the 2002 standard for internationalization

� Group items in COBOL often work differently than elementary items

� Especially in moves and compares, but elsewhere also

For example

01 Country-info.
02 country-name pic N(25).
02 country-capitol pic N(25).

01 Country-hold.
02 hold-name pic N(25).
02 hold-capitol pic N(30).

.

.

.
move country-info to country-hold

� Group moves act upon the single group item without respect to
elementary items in the group

� hold-name will end up with the value of country-name

� hold-capitol will have the 25 characters (50 bytes) of
country-capitol followed by 10 bytes of EBCDIC spaces (not 5
Unicode spaces)

� Even if you add USAGE NATIONAL at the group levels!

Copyright � 2013 by Steven H. Comstock 23 Unicode

Unicode Support in Enterprise COBOL, 16

� Group items in COBOL often work differently than elementary items,
continued

Another example

01 Country-info.
02 country-name pic N(25).
02 country-capitol pic N(25).

01 language pic N(25).
01 summary-string pic N(75).
. . .

string country-info delimited by size
language delimited by size
into summary-string

� Country-info is treated as an alphanumeric (classic) group, even
though its elementary items are all national

� This fails at compile time because it is not allowed to have both
alphanumeric and national items in a STRING statement

Still another example

01 Country-info.
02 country-name pic N(25).
02 country-capitol pic N(25).

.

.

.
inspect country-info tallying ctr
for leading spaces

� Looks for EBCDIC spaces in group level items

Copyright � 2013 by Steven H. Comstock 24 Unicode

Unicode Support in Enterprise COBOL, 17

� So to handle these (and other) cases, the group level specification
was added

GROUP-USAGE [IS] NATIONAL

� When this is placed at the group level, padding for group level
MOVEs, comparisons for group level INSPECTs, and so on, use
National characters

� Furthermore, all items in the group are now NATIONAL category
(may not have non-Unicode data in a group designated with
GROUP-USAGE NATIONAL)

� Do not specify a regular USAGE on a group item that has
GROUP-USAGE clause or on any subordinate elementary item

� Any subordinate signed numeric items must have SIGN IS
SEPARATE clause

� Any group that is defined without a GROUP-USAGE NATIONAL
clause is an alphanumeric group, even if all the elementary items
in the group are declared as NATIONAL

For example:

01 Country-info group-usage national.
02 country-name pic N(25).
02 country-capitol pic N(25).

.

.

.
inspect country-info tallying ctr
for leading spaces

� Works as you would like it to, tallying Unicode spaces

Copyright � 2013 by Steven H. Comstock 25 Unicode

Unicode Support in Enterprise COBOL, 18

� In general: USAGE NATIONAL at the group level causes subordinate
groups and elementary items to act as alphanumeric groups and
items when the group is specified in a verb:

� Group moves / compares are byte-wise

� If one operand of a compare is a USAGE NATIONAL and the
other is an alphanumeric literal, say, the literal will not be
converted to National

� Whereas if you compare a National elementary item to an
alphanumeric literal, the literal will first be converted to National

� Group level INITIALIZE on USAGE NATIONAL group item is
treated as an alphanumeric INITIALIZE

� { MOVE | ADD | SUBTRACT } CORRESPONDING on a group item
defined with USAGE NATIONAL treat the subordinate items as
alphanumeric items, and no conversion is done

� A USAGE NATIONAL group, if used as a DB2 host variable, is
treated still as alphanumeric

� XML GENERATE from a USAGE NATIONAL item will treat the
group as alphanumeric (discussed later)

� Using GROUP-USAGE NATIONAL at the group level eliminates those
surprises

� Note: cannot use JUSTIFIED for a GROUP-USAGE NATIONAL
group

Copyright � 2013 by Steven H. Comstock 26 Unicode

Unicode Support in Enterprise COBOL, 19

� Compare behavior of a group level National USAGE to a
GROUP-USAGE NATIONAL clause; that is:

01 Country-info usage national.
02 country-name pic N(25).
02 country-capitol pic N(25).

01 Country-hold.
02 hold-name pic N(25).
02 hold-capitol pic N(30).

.

.

.
move country-info to country-hold

� Will still pad with trailing EBCDIC spaces to hold-capitol, since
Country-info is still considered an alphanumeric group(!)

01 Country-info group-usage national.
02 country-name pic N(25).
02 country-capitol pic N(25).

01 Country-hold.
02 hold-name pic N(25).
02 hold-capitol pic N(30).

.

.

.
move country-info to country-hold

� Will pad with trailing Unicode spaces to hold-capitol

Copyright � 2013 by Steven H. Comstock 27 Unicode

Unicode Support in Enterprise COBOL, 20

� New National data types

� Before version 3.4, only Unicode character strings (picture
characters of N) were supported

� Now (Enterprise COBOL 3.4 and later), several new data types
are provided:

� National-edited - specify USAGE NATIONAL but allow B (for
Unicode blank), 0 (for Unicode zero), and / (for Unicode slash)
as well as [at least one] N for Unicode character:

05 account_no pic nn/nn/nnnn national.

� National decimal - specify USAGE NATIONAL but allow 9 (for
Unicode numeric digit), V (for implied decimal place), P (for
decimal scaling) and S (for Unicode sign); must have at least one
'9'; if signed, must have SIGN [IS] {LEADING | TRAILING}
SEPARATE [CHARACTER]:

05 un-price pic s9(5)V99 national
sign is leading separate.

Copyright � 2013 by Steven H. Comstock 28 Unicode

Unicode Support in Enterprise COBOL, 21

� New National data types, continued

� National numeric-edited - specify USAGE NATIONAL but allow
B (for Unicode blank), P (for scaling), for Z (to indicate
suppression of leading non-significant zeros), comma (,) or
period (.) or slash (/) (as Unicode insertion characters) possibly
one of + - CR DB (as Unicode insertion characters indicating
sign value) and possibly a currency indicator (floating or fixed
asterisk (*), dollar sign ($) or other currency symbol as specified
in the special-names paragraph)

05 out-price pic $$,$$9.99 national.
05 balance pic 99,999,999.99DB national.
05 u-date pic 99/99/9999 national.
05 no-widgets pic zz,zz9 national.

� National floating-point - specify USAGE NATIONAL but use a
floating point format: {+ | - }mantissaE{+ |-}99 (if a sign is missing
it is assumed to be a plus sign; mantissa must contain '9's
representing decimal positions and either a period (.) to
represent an actual decimal place or a V to represent an implied
decimal place:

05 in-factor pic 1.34E12 national.

� National decimal and National floating-point may participate in the
same arithmetic operations other numeric data types can appear in
(ADD, SUBTRACT, MULTIPLY, DIVIDE, COMPUTE, arithmetic intrinsic
functions, comparisons, etc.)

Copyright � 2013 by Steven H. Comstock 29 Unicode

Unicode Support in Enterprise COBOL, 22

� Currency sign clause still works only with alphanumeric literals:

Example

� This code

Environment division.
Configuration section.
Special-names.

currency 'Eur' picture symbol '%'
currency x'9f' picture symbol '$'.

.

.

.
data division.
working-storage section.

01 amount-field pic s9(7)v99 packed-decimal
value +346928.33.

01 disp-1 pic %z,z99,999.99 national.
01 disp-2 pic $z,z99,999.99 national.
01 disp-3 pic %%%,%99,999.99 national.

Procedure division.

move amount-field to disp-1, disp-2, disp-3
display function display-of(disp-1 1140)
display function display-of(disp-2 1140)
display function display-of(disp-3 1140)
goback.

� Produces this on the SYSOUT file:

Eur 346,928.33.
¤ 346,928.33.

Eur346,928.33.

Copyright � 2013 by Steven H. Comstock 30 Unicode

When Will You Need To Use Unicode Support?

� Many of the conversions between Unicode and EBCDIC are handled
by compiler generated routines and other processes

� For example, when using the DB2 coprocessor (compile option
SQL in effect) the codepage CCSID is automatically coordinated
between COBOL and DB2

� Java:COBOL interoperability uses Unicode implicitly "under the
covers"

� But there may be times for you to explicitly use Unicode support

� Since Java is based on Unicode, when COBOL programs and
Java methods are communicating, Java strings are in Unicode,
so may want / need to use Unicode support

� XML documents and XHTML pages may be coded in UTF-16,
UTF-8, ASCII, or EBCDIC

� You can parse XML documents encoded in EBCDIC or UTF-16
directly from a COBOL program

� For ASCII or UTF-8, you can use National-of to convert to
UTF-16 then parse, or use Display-of to convert the UTF-16 to
an EBCDIC codepage then parse

� There may be other applications for Unicode depending on your
environment and set up

Copyright � 2013 by Steven H. Comstock 31 Unicode

Things To Watch Out For

� If you convert the encoding of an XML document or HTML or XHTML
page, you need to watch out for embedded information that is no
longer valid

� For XML, an encoding="utf-8" or encoding="utf-16" attribute may
need to be changed

� For HTML, a meta statement including something like
charset=utf-8 or charset=utf-16 may need to be changed

� XHTML might have either of these

� In all these cases, the encoding or charset value needs to be changed
to reflect the new encoding scheme

� First you need to see if such embedded information is present
and if so, to change it, using something like this

� Here we assume you have converted UTF-8 data to EBCDIC on
the way to converting to UTF-16:

01 utf8-char pic x(16) value 'charset=utf-8"> '.
01 utf16-char pic x(16) value 'charset=utf-16">'.
01 ebcdic-work pic x(102).
.
.
.

inspect ebcdic-work replacing all
utf8-char by utf16-char

� It is tricky to code for the general case; in many cases you can get
by with ignoring this (if external sources, such as message headers,
will be determining the document encoding, for example)

Copyright � 2013 by Steven H. Comstock 32 Unicode

Things To Watch Out For, 2

� Also be careful to do this checking at the right point in time in your
logic

� For example, you may not be able to check for the presence of
charset=ascii of a data item currently encoded in ASCII

� You need to get the data item into the same code page as your
compile time CODEPAGE value first, so literal values are
correctly interpreted

� Note that you may need to convert data in a code page into Unicode
(UTF-16) (using function National-of()) and then into the target code
page (using function Display-of()) as in our example on page 22

� That is, UTF-16 may need to be used as an intermediate stop,
even if you do not intend to end up there

� The DISPLAY-OF and NATIONAL-OF functions output substitution
characters when an input character has no corresponding output
character in the respective code pages

� DISPLAY-OF uses x'3F' for EBCDIC input, x'7F' for ASCII input,
x'1A' for UTF-8 input, and x'001A' for UTF-16 input

� NATIONAL-OF uses x'001A' for a substitution character

� If either conversion fails, a severe runtime error occurs (this is
usually because Unicode conversion services have not been
installed properly (or at all))

Copyright � 2013 by Steven H. Comstock 33 Unicode

Computer Exercise: Set Up and Handling Unicode

Lab Set Up

Run the rexx exec called D705STRT; this creates three libraries for you:

<userid>.TR.CNTL - contains JCL you will need to
compile, link, and test the labs

<userid>.TR.COBOL - contains some starter code for later;
this is where you will code your programs

<userid>.TR.LOAD - used to hold load modules; the JCL is
set up to compile and link into this
library, then run your programs from
this library.

This also creates an empty flat file for use later in this lab:
<userid>.TR.UTF16

To run the exec, use ISPF 6 (command); and key in the following:

===> ex '_________.train.library(d705strt)' exec

and press <Enter>

This will run the rexx exec, which prompts you for a high level qualifier to use
for the data set names mentioned above, defaulting to your TSO id; this is
normally fine, so just press <Enter>. You should see a screen telling you the
setup was successful.

Copyright � 2013 by Steven H. Comstock 34 Unicode

Computer Exercise, p. 2

Actual Lab

We have an HTML file coded in utf-8 that contains a Japanese kanji
character in the first two bytes of the description field in each record. Our
goal is to convert this file to utf-16 encoding in a file.

The big picture: for each record in the input file we want to …

* read the record into utf-8-rec

* display this record (will not be very readable)

* convert the utf-8 record to utf-16 into utf-16-rec

* convert the contents of utf-16-rec to ebcdic (code page 1140) into the
field called ebcdic-work

* if the contents of ebcdic-work contains charset=utf-8"> then
convert that to charset=utf-16">

* display the contents of ebcdic-work

* write the contents of utf-16-rec to our output file

The file name of the input file is __________.TRAIN.HTMLUJ2. The file
name of the output file will be <hlq>.TR.UTF16.

We have supplied skeleton code, named COBUNI in your TR.COBOL library;
the member D705RUN1 in your TR.CNTL library is JCL to compile, link, and
run COBUNI. The source for COBUNI is on the following pages.

The steps:

0. [optional] - download the utf-8 file in binary and open it in your browser

1. modify the code supplied to accomplish the tasks listed above;
compile and run the code until successful

2. [optional] - download the utf-16 file in binary and open it in your
browser

Note: you may need to rename the files on your PC to end in .html

Copyright � 2013 by Steven H. Comstock 35 Unicode

Code Supplied As COBUNI

Id division.
Program-id. COBUNI.
* Copyright ©) by Steven H. Comstock, 2004 Ver 2

Environment division.
Input-output section.
File-control.

Select utf8in assign to utf8in.
Select utf16 out assign to utf16out.

Data division.
File section.
FD utf8in

recording f.
01 utf-8-in pic x(102).

FD utf160ut
recording f.

01 utf-16-out pic n(102).

Working-storage section.
01 utf-8-rec pic x(102).
01 utf-16-rec pic n(102).
01 utf-16-work pic n(204).
01 ebcdic-work pic x(102).
01 utf8-char pic x(16) value 'charset=utf-8"> '.
01 utf16-char pic x(16) value 'charset=utf-16">'.
01 cntr pic s9(4) binary value 0.
01 Flags.

02 end-of-file pic x value '0'.
88 end-in value '1'.

Copyright � 2013 by Steven H. Comstock 36 Unicode

Note: depending on how the compiler is installed in your
installation, you may need to add a PROCESS statement
at the front with NSYMBOL(NATIONAL) to get the
program to compile correctly.

Code Supplied As COBUNI, 2

Procedure division.
start-up.

display 'Starting program ...'
* open file and build document

open input utf8in
output utf16out

perform get-in

perform until end-in

display 'Original record in utf-8: ' utf-8-rec

* convert utf-8-rec to utf-16 in utf-16-rec

* convert contents of utf-16-rec to ebcdic
* in ebcdic-work

* display ebcdic-work contents

Copyright � 2013 by Steven H. Comstock 37 Unicode

Code Supplied As COBUNI, 3

* for records with "charset" field, change value;
* that is: move 0 to cntr
* inspect ebcdic-work tallying cntr for all
* utf8-char
* if cntr > 0
* inspect ebcdic-work
* replacing all utf8-char
* by utf16-char
* display the resulting contents in
* ebcdic-work
* then convert the contents of ebcdic-work
* into utf-16 in utf-16-rec
* (hint: use National-of function)
* end-if
*
**

* write out utf-16-rec, get next input record
write utf-16-out from utf-16-rec
perform get-in

end-perform

display 'Ending program ...'

close utf8in, utf16out
goback.

get-in.
read utf8in into utf-8-rec
at end set end-in to true

end-read

Copyright � 2013 by Steven H. Comstock 38 Unicode

