
Using LE Services in z/OS

Using LE Services in z/OS - Course Objectives

On successful completion of this class, the student, with the aid of the
appropriate reference materials, should be able to:

1. Code programs using one or more of these LE-conforming compilers:

Enterprise COBOL for z/OS and OS/390, COBOL for OS/390 & VM

z/OS C/C++, XL C/C++

Enterprise PL/I for z/OS and OS/390, PL/I for MVS & VM,
Visual Age PL/I for OS/390

or Assembler language

2. If appropriate, include FORTRAN programs in the mix, even though none of
the current FORTRAN compilers are LE-conforming

3. Invoke LE message management services to create and issue user run time
messages (in multiple natural languages, if necessary)

4. Use LE storage management services for holding large tables or entire
files in virtual storage

5. Use LE condition handling routines to intercept and handle appropriate
conditions under user control

6. Use LE date and time services for working with dates, times, and durations.

Assembler programmers may explore using preintialization and Library Routine
Retention services.

Note: z/OS V1R6 and later support 64-bit LE-conforming applications in C/C++
and Assembler. LE callable services are not supported. There are some new
runtime options to support AMODE 64. 64-bit issues are not discussed in this
course.

1

M512 / 3 Days These Materials Copyright � 2012 by Steven H. Comstock V4.1

Using LE Services in z/OS - Topical Outline

Day One

Course Survey - what languages to include in the discussion

Introduction to Language Environment
What Is Language Environment?
LE Services
Invoking LE Services
Tokens
LE Program Management
z/OS UNIX and POSIX
LE Program Management, Second Pass
LE and 64-bit Processes
Introduction to XPLINK

LE Message Services and Running LE Programs
Language Environment Message Handling Services
The CEEMOUT Service
Compiling and Linking LE Programs
Running LE Programs
Computer Exercise: A First Encounter With Language Environment .. 58

More on Message Handling Services
Message ID's
Loadable Text Files
Message Tag Files
The CEEBLDTX Exec
Creating a Message Module Table
The CEEMSG service
Computer Exercise: Using Message Files .. 90

2

M512 / 3 Days These Materials Copyright � 2012 by Steven H. Comstock V4.1

Using LE Services in z/OS - Topical Outline, p.2.

Message Inserts and Run-Time Parameters
Message inserts
The CEECMI service
The CEEMGET service
Run-Time parameters
Sources for run-time parameters
The CEE3PRM Service
The CEE3PR2 Service
Computer Exercise: Message Inserts and Run-Time Parameters . 165

Day Two

Tokens, Return Codes, and Termination
Token composition and decomposition: CEENCOD and CEEDCOD services
Data types for LE services parameters
Symbolic feedback codes
Return values from LE services
Determining enclave return codes
The CEE3GRC and CEE3SRC services

User Area Fields
The CEE3USR service

Determining the Platform and Environment Information
The CEEGPID, CEE3INF, and CEEENV services

Debugging Services
The CEE3DMP, CEE3ABD, and CEETEST services
Computer Exercise: Creating an LE Dump 226

Storage Management Services
Library and user storage, stack and heap storage
Run-time parameters that influence storage management
Library storage (stack and heap); user storage (stack and heap)
CEEGTST, CEEFRST, CEECZST, CEECRHP, CEEDSHP, CEE3RPH
Computer Exercise: Using Heap Storage 272

3

M512 / 3 Days These Materials Copyright � 2012 by Steven H. Comstock V4.1

Using LE Services in z/OS - Topical Outline, p.3.

Condition Handling
Part 1 - Concepts
Part 2 - Using Condition Handlers
Setting Up for Using Your Own Condition Handlers
Register Condition Handlers: CEEHDLR
Signaling Conditions: CEESGL
Part 3 - Writing Your Own Condition Handlers
Condition Handler Design
Possible actions in a condition handler
Handle cursor and Resume cursor, CEEMRCR, CEEMRCE
CEE3SRP, CEEGQDT, CEE3GRN, CEE3GRO, CEEITOK
Information Available To a Condition Handler
Condition Handling Tips
Computer Exercise: Condition Handlers ... 332

Day Three

ILC - Inter Language Communication
Data Types
Methods of Passing and Receiving Data
Language pair considerations
Multiple Language Applications
Computer Exercise: Calling Subroutines in Multiple Languages 401

Assembler Considerations - Optional
Macros CEEENTRY, CEETERM, CEECAA, CEEDSA, CEEPPA
Using System Services
The CEELOAD macro and service
Macros CEEFETCH, CEERELES
AMODE Considerations
CEEFTCH macro

Preinitialization Services (CEEPIPI) - Optional
Library Routine Retention (LRR) - Optional

4

M512 / 3 Days These Materials Copyright � 2012 by Steven H. Comstock V4.1

Using LE Services in z/OS - Topical Outline, p.4.

Date and Time Services
Date and time formats
LE date and time services: CEEDATE, CEEDATM, CEEDAYS, CEEDYWK,
CEEGMT, CEEGMTO, CEEISEC, CEELOCT, CEEQCEN, CEESCEN,
CEESECI, CEESECS, CEECBLDY, CEE3DLY, CEEDLYM
The Century Window
Date and time conflicts: COBOL, PL/I, C
Computer Exercise: Date and Time Services 490

LE International Support
Services, Supported countries, languages
LE Locale Services

LE Math and Bit Manipulation Routines

LE: Miscellaneous Topics
CICS, IMS
Nested enclaves

XPLINK (C, C++ Users Only)
Traditional CALL Linkages
XPLINK - Extra Performance Link

5

M512 / 3 Days These Materials Copyright � 2012 by Steven H. Comstock V4.1

Course Survey - Languages Selection

� This course is multi-lingual, but we don't talk about programming
languages you will not be encountering

� So here is the time for you to specify which languages you are
interested in exploring during this class

� Based on your selection(s) we will omit parts of lecture and labs
that are not relevant to your work

Language

______ Assembler

______ C

______ COBOL

______ PL/I

6

M512 / 3 Days These Materials Copyright � 2012 by Steven H. Comstock V4.1

LanguageEnvironmentConcepts

Copyright � 2012 by Steven H. Comstock 7 Language Environment Concepts

Section Preview

� Introduction to Language Environment (LE)

� What Is LE?

� LE Services

� Benefits of Using LE

� Invoking LE Services

� Tokens

� LE Program Management

� POSIX and z/OS UNIX

� LE Program Management, Second Pass

� LE and 64-bit Processes

� Introduction to XPLINK

What Is Language Environment?

� The run-time library support for the versions of IBM mainframe
compilers that will continue to be enhanced

� IBM Enterprise COBOL for z/OS is the current COBOL compiler
for LE

� It supports the ANSI '89 amendment to the ANSI '85 standard
(primarily intrinsic function support), along with selected
extensions and some features from the 2002 standard

� The current PL/I compiler for LE is IBM Enterprise PL/I for z/OS

� The LE C/C++ compiler is and XL C/C++

� Visual Age for Java, Enterprise Edition for z/OS

— These are often called the “LE conforming compilers”

� Note that some earlier versions of these compilers are also
supported, depending on the release of z/OS you are running

� LE provides support for Assembler

� LE also provides run-time support for VS FORTRAN (versions 1 and
2), FORTRAN IV H Extended, and FORTRAN IV G1

� Although none of these are LE-conforming compilers

Copyright � 2012 by Steven H. Comstock 8 Language Environment Concepts

What Is Language Environment? (continued)

� LE is a set of programs that provide the following capabilities

� A common run-time environment for many languages

� COBOL, PL/I, C, C++, Assembler, Java, FORTRAN

� A set of callable routines that provide useful services for
applications written using LE conforming compilers

� Date and time, storage management, mathematical, etc.

� LE is used to support z/OS UNIX System Services, also called,
more simply, z/OS UNIX

� Including support for UNIX file structures (directories,
subdirectories, ... , files) and standard UNIX calls and services

� LE supports DLLs (Dynamic Link Libraries) both under UNIX and
native z/OS

� A DLL is a program object that contains one or more functions
(subroutines) and variables that can be accessed from
applications dynamically

� The latest C, C++, COBOL, and PL/I compilers support creating
and accessing DLL functions and variables, as does HLASM (the
High Level Assembler)

Copyright � 2012 by Steven H. Comstock 9 Language Environment Concepts

LE Conforming Programs

� A program is “LE conforming” if it establishes or runs under the LE
run-time environment and follows LE conventions

� Programs compiled using the compilers designed for the LE
environment are automatically LE conforming:

� IBM Enterprise COBOL for z/OS

� IBM Enterprise PL/I for z/OS

� XL C/C++

� Visual Age for Java, Enterprise Edition for OS/390

� These compilers automatically generate dynamic calls to the
Language Environment initialization routines

� In fact, programs compiled and bound using these compilers
must run under the LE run-time environment

� Of course, Assembler programs can also be written to invoke the LE
initialization routines, but the Assembler doesn't automatically
generate the linkages to these routines

� More on Assembler linkages later

Copyright � 2012 by Steven H. Comstock 10 Language Environment Concepts

LE Services

� As an overview, the services available to Language Environment
conforming programs fall into the following categories

� Storage Management - obtain and free memory dynamically

� Condition Handling - detect errors and other conditions, and
handle conditions in a consistent manner

� Messaging Services - define message files that can be shared by
many programs; issue messages, including

� substituting variables from programs

� route messages to various target locations

� Date and Time Services - get and store date and time in various
formats; convert between formats

� Debugging Services - retrieve / set error codes; generate dumps;
invoke a debug tool

� Mathematical Services - Trigonometric functions; exponential
and logarithmic functions; etc.

� International Services - retrieve / set country, language, currency,
and similar attributes, including support for locales

Copyright � 2012 by Steven H. Comstock 11 Language Environment Concepts

Using LE Services

� Language Environment services are accessed using CALL
statements (or CALL-like mechanisms, such as function references
in C/C++)

� All Language Environment services are subroutines

� All these subroutine names begin with “CEE”

� A program using Language Environment services must be compiled
using the appropriate compilers

� Just inserting CALLs to these services and then compiling with
an earlier compiler won't work because the service calls assume
the LE environment has been established

� However, note that non-LE conforming programs can run under the
LE run-time environment (a COBOL II load module, for example, can
be called by an Enterprise COBOL main program)

� Details on mixing environments are discussed later

Copyright � 2012 by Steven H. Comstock 12 Language Environment Concepts

Portability

� Language Environment conforming programs are portable to other
platforms in the following sense

� Load modules port between z/OS and z/VM

� Source code ports between z/OS, and z/VM

� Source code ports to VSE when running Language Environment
for z/VSE

� COBOL, PL/I, and C/C++ source code ports to the corresponding
OS/400 languages when the Integrated Language Environment
(ILE) is installed

1,2

Notes

� Services unique to the z/OS environment do not port; these
service names all begin with the string “CEE3” (there is often a
corresponding service for other platforms, but not always)

� Assembler language programs do not port between the various
hardware platforms

� The CEEGPID and CEE3INF services can be used to return the
version of LE, the operating system platform a program is running
under, and the environment (CICS, TSO, batch, etc.)

� So applications can be designed to be portable at the source
level to many different operating systems and environments

Copyright � 2012 by Steven H. Comstock 13 Language Environment Concepts

Benefits of Using LE

� The LE compilers provide the latest language features

� For example, Enterprise COBOL supports all COBOL II features
plus the intrinsic functions added to the COBOL ANSI '85
standard in the 1989 amendment (and even object oriented
COBOL!) along with Unicode and XML support and much more

� LE provides a single, common run-time library supporting multiple
languages

� LE provides a suite of useful services callable by all LE conforming
programs

� LE programs may port across platforms, including the use of LE
services

� Debugging LE programs can be more efficient than debugging
non-LE programs, especially in a multiple language environment

� LE provides a single dump formatting service, for example, and a
single debug tool interface that can debug applications written in
multiple languages

� Programs may run significantly faster than programs compiled using
previous compilers

� See following page

Copyright � 2012 by Steven H. Comstock 14 Language Environment Concepts

Performance Improvements Using LE

� Multiple language applications have a single run-time environment
and library

� And a streamlined path for inter-language communications

� LE environment has optimized the CALL interface for all uses

� Gaining performance benefits when using system services

� Programs can gain performance benefits because of new capabilities
- options that simply haven't been available

� These combinations can result in improvements from 5% to 30%,
depending on the application and amount of tuning done

One company's experience (COBOL II to COBOL for MVS & VM)

� 5-10% improved performance for batch programs with no
recompile (use LE runtime libraries)

� Up to 23% improved IMS transaction performance with recompile

Another company's experiences

� 9% faster performance moving from COBOL II R2 to COBOL for
MVS & VM (production batch)

� 29% performance improvements in program that calls C service
routines

� On the other hand, some companies have experienced performance
losses

Copyright � 2012 by Steven H. Comstock 15 Language Environment Concepts

Invoking LE Services

� Assembler Language

� If the main program for an LE application is Assembler, this
program must invoke the Language Environment initialization
code (this is discussed later)

� Standard CALL syntax applies to invoking services, for example

Call CEEMSG,(in_token,dest2,fc_token)

� On return, check the contents of “fc_token”, not R15, to see if
request was successful

Copyright � 2012 by Steven H. Comstock 16 Language Environment Concepts

Invoking LE Services, 2

� COBOL

� Standard CALL syntax applies to invoking services, for example

Call 'CEEMSG' using in-token, dest2, fc-token

� On return, check “fc-token”, not RETURN-CODE

� Calls may be either static or dynamic

Copyright � 2012 by Steven H. Comstock 17 Language Environment Concepts

Invoking LE Services, 3

� PL/I

� There is a source INCLUDE file, CEEIBMAW, shipped with the
compiler, containing declarations for all the callable services

� Coding a “%INCLUDE CEEIBMAW” statement in your program
saves you the effort of declaring any of the callable services

� You must invoke Language Environment services using CALL,
not a function reference, for example

%include CEEIBMAW;
.
.
.
call ceemsg (in_token, dest2, fc_token);

� Check “fc_token” to test result of the service request, not
PLIRETV

Copyright � 2012 by Steven H. Comstock 18 Language Environment Concepts

Invoking LE Services, 4

� C/C++

� The “leawi.h” header file shipped with C/C++ contains
declarations of all LE callable services and OMIT_FC (which can
be used to omit the feedback code token parameter)

� You must invoke LE services as procedures, you cannot invoke
them as function calls

� LE services have the return type of void, and thus do not return
values

Example

#include <leawi.h>
.
.
int main(void)
{
.
.
CEEMSG(&intoken,&dest2,&fc_token);
.
.
}

� Note that input strings used as parameters are not null
terminated

� Check the value in “fc_token” to see how the request went

Copyright � 2012 by Steven H. Comstock 19 Language Environment Concepts

Invoking LE Services, 5

� FORTRAN

� Although FORTRAN programs can't directly call LE services,
there are two services provided that can act as intermediaries
between a FORTRAN program and most of the LE callable
services

� AFHCEEF - Call an LE service, providing a feedback field

Example

EXTERNAL CEEMSG
.
.
.
CALL AFHCEEF (CEEMSG, INTOKEN, DEST2, FCTOKEN)

� AFHCEEN - Call an LE service, omitting the feedback field

Example

EXTERNAL CEEMSG
.
.
.
CALL AFHCEEN (CEEMSG, INTOKEN, DEST2)

Copyright � 2012 by Steven H. Comstock 20 Language Environment Concepts

Arguments and Parameters

� When your program issues a CALL to an LE service, the CALL must
include one or more arguments passed to the service

� From the perspective of the service, the passed values are called
parameters

� The data are the same, it's simply the perspective:

� From the perspective of the calling program, the values are
called arguments

� From the perspective of the called program, the values are called
parameters

� You pass arguments, you receive parameters

� This is the traditional nomenclature used by PL/I

� Most other languages have used the term “parameter” from both
perspectives

� It is not a big deal: this is just to provide you with a clue to these
terms as used in the IBM documentation

Copyright � 2012 by Steven H. Comstock 21 Language Environment Concepts

Tokens

� A token is a string of data that represents an object or a situation
(condition)

� In Language Environment, most services return a condition token
that indicates how the service request went

� Some LE services also take a condition token as input

� For example, the CEEMSG service issues the message that
relates to a condition token

� The CEEDCOD service takes a condition token returned from
some previous service and breaks out its component parts

Copyright � 2012 by Steven H. Comstock 22 Language Environment Concepts

Condition Tokens and Feedback Codes

� The last argument passed to a call of an LE service (next-to-last
argument for LE math services) is the name of a variable into which
the service places a condition token

� A 12-byte area of memory used for holding feedback information

� So this last argument is often called the fc argument, for
feedback code

� Condition tokens are classified as Case 1 or Case 2, and have the
following layouts:

Case 1

Case 2

� Flag bits have the following meaning:

2 bits for case ('01' or '10'); identify condition token type

3 bits for severity ('000' through '100' (0-4))

3 bits for control ('001' -> facility ID assigned by IBM;
'000' -> facility ID assigned by user)

Copyright � 2012 by Steven H. Comstock 23 Language Environment Concepts

Facility IDFlagsMsg_noSeverity ISI

4 bytes3 bytes1 byte2 bytes2 bytes

Facility IDFlagsCauseClass ISI

4 bytes3 bytes1 byte2 bytes2 bytes

More on LE Tokens

� Generally speaking, LE generates Case 1 condition tokens while
application programs can generate Case 1 or Case 2 condition
tokens

� You might use Case 2 tokens, for example, if you didn't want to
get wrapped up in the message numbering / naming scheme set
up for Case 1 tokens and most messaging services

� The ISI (Instance Specific Information) field contains zero (no further
information) or an ISI block number

� LE maintains a number of ISI blocks for each thread

� Conditions that need to specify more information grab an ISI
block and put the block number in the ISI field of the condition
token

� When a condition is handled, its ISI blocks may be reused

� In some instances the data found in the ISI contains a
"q_data_token" (“q_data” for qualifying data)

� This is the address of a list of addresses of more data (the
details are beyond the scope of this course)

Copyright � 2012 by Steven H. Comstock 24 Language Environment Concepts

Tokens and Severity Codes

� One of the pieces of information in a condition token is the severity
of the condition

� A severity code of 0 means the request was satisfied with no
unusual results; in this case the entire token is returned as
binary zeros

� A severity code of 1 means a Warning level: things are probably
OK (example: you issued a message that was too long, so it was
truncated)

� A severity code of 2 means an Error was detected, correction
was attempted, and the service completed, probably correctly
(example: you requested a date to be formatted and the current
country code is invalid; the default format was used)

� A severity code of 3 means a Severe error was detected, the
service could not complete, there may be negative side effects
(example: you asked for a date to be formatted, but the date was
not in the acceptable range)

� A severity code of 4 means a Critical error was detected, the
service was incomplete, and a condition is signaled (example:
storage management services control information was found to
be damaged)

Copyright � 2012 by Steven H. Comstock 25 Language Environment Concepts

Reacting to Conditions

� When you check a condition token or detect a user-defined
condition in your program, you can take any of several actions

� Continue running

� Signal a condition to be handled by the condition manager (and
thus, perhaps, be routed to a user-provided condition handling
routine)

� Build a message and save it in memory or send it to a
destination immediately

� Handle anticipated situations as appropriate to the application

� If a condition is signaled, the token representing the condition is
presented to all condition handlers available to the thread

Copyright � 2012 by Steven H. Comstock 26 Language Environment Concepts

Including the FC Token Argument

� If you call an LE service and include the fc token argument, that LE
service might detect an error condition

� If the severity code of the condition is less than 4, control is
returned to your program with the fc parameter containing the
severity code value in the condition token

� Your program can now check the code or not

� Some services need not be checked because they will either
work correctly or you'll never get control back to your
program: the condition manager will be signaled directly

� If the severity code is 4, control passes directly to the condition
manager for processing using standard LE condition handling
procedures

Copyright � 2012 by Steven H. Comstock 27 Language Environment Concepts

Omitting the FC Token Argument

� If you call an LE service and omit the fc token argument ...

� If the resulting severity code is 0, resume execution at the next
sequential instruction

� If the severity code from the service is greater than 0, the
condition represented by the token is automatically signaled

� Thus your program can omit fc token arguments, and the
checking the value of these tokens, and have LE automatically
signal conditions of severity greater than 0

� Control will pass to the thread condition manager, which will pass
the condition to all registered condition handlers:

� If some condition handler handles the condition, resume
execution at the point specified (details later)

� If the condition is unhandled, if the severity code is 1, resume
execution at the next sequential instruction

� If the condition is unhandled, if the severity code is greater
than 1, add 1 to an error counter

� If the ERRCOUNT run-time parameter is 0, or if
ERRCOUNT is greater than 0 and the error counter is less
than ERRCOUNT, re-drive the condition manager stack
one more time, indicating a condition of termination
imminent (if condition remains unhandled, terminate the
thread)

� If the ERRCOUNT run-time parameter is greater than 0,
and if the error counter exceeds this value, terminate the
thread immediately, with Abend code 4091 and reason
code 11

Copyright � 2012 by Steven H. Comstock 28 Language Environment Concepts

Omitting the FC Token Argument, continued

� All languages may omit the fc argument:

� Assembler: do not code the argument; code 'VL' after argument
list

� C/C++: code the fc argument as NULL or OMIT_FC

� COBOL: code the fc argument as OMITTED

� Note: if you specify the fc argument as OMITTED and the service
is successful, the RETURN-CODE special register is set to zero;
if the service is un-successful, RETURN-CODE is not modified; if
you supply an fc argument, RETURN-CODE is always set to 0,
regardless of the success or failure of the service

� PL/I: code the fc argument as *

� FORTRAN: invoke the service using a call to AFHCEEN

� We will always supply this argument in our examples, but it is an
option to keep in mind

� Details of condition handling routines and their possibilities are
discussed later in this course

Copyright � 2012 by Steven H. Comstock 29 Language Environment Concepts

LE Program Management

� Language Environment manages programs and resources using a
model that recognizes

� Thread - the execution of an application's program(s); think
"task" in traditional z/OS terms

� Enclave - programs and storage used by one or more related
threads; an enclave consists of: a single main program, any
number of sub-programs (subroutines), and storage shared
among the programs; think "run-unit"

� Process - one or more related enclaves and their shared
resources: a message file and the runtime library (for batch,
think: a logical chunk of an address space containing related
programs, data, and control blocks; for online programs, think:
transaction)

� When you run an LE main program (LE-conforming Assembler or
LE-conforming high level language compiler), LE initializes the
run-time environment (process) by initializing an enclave and an
initial thread

� Enclave initialization acquires an initial heap storage and
establishes the starting values of attributes such as the country
and language settings and the century window

� Thread initialization acquires a stack, enables a condition
manager, and launches the main program

� You can modify initialization by running a user exit

Copyright � 2012 by Steven H. Comstock 30 Language Environment Concepts

LE Program Management, continued

� Let's examine this program management model a little more closely

� Start with the enclave: this is really the most familiar concept for
most programmers:

� A mainline and the subroutines it calls (including subroutines
called by subroutines, etc.)

� The subroutines may be called statically or dynamically

� An enclave

Copyright � 2012 by Steven H. Comstock 31 Language Environment Concepts

move

.

.

move

.

.

add

.

.

perform

.

.

call

.

.

if ...

.

.

compute

.

.

move

.

.

compute

.

.

{return

exit

end

stop}

move

.

.

move

.

.

compute

.

.

call

.

.

compute

.

.

return

move

.

.

move

.

.

compute

.

.

compute

.

.

return

LE Program Management, continued

� Now, as the program executes, if we could trace its progress we
might see a line of execution something like this:

� This line of instruction execution is called a thread

� Note that although there are three programs here, there is a
single thread

Copyright � 2012 by Steven H. Comstock 32 Language Environment Concepts

move

.

.

move

.

.

add

.

.

perform

.

.

call

.

.

if ...

.

.

compute

.

.

move

.

.

compute

.

.

{return

exit

end

stop}

move

.

.

move

.

.

compute

.

.

call

.

.

compute

.

.

return

move

.

.

move

.

.

compute

.

.

compute

.

.

return

LE Program Management, continued

� Multiple Threads

� If a program wanted to start another, independent, program to do
some work on its behalf, we would have a multi-threaded enclave

� For example, a program might be written to analyze a customer
data base for logical consistency in areas where the data base
definition can't

� For each row in the customer table, it would be nice to start a
thread to follow all the cross-table connections for that customer

� The initial thread could just be responsible for “kicking off” each
sub-thread to work independently and then go on to start the
next one

� A schematic might look like this:

� Here we see a representation of an enclave with multiple threads,
each independent of the other

� Threads are created and dispatched by the kernel

� Each thread has its own copy of the condition manager and its
own set of thread-level resources

Copyright � 2012 by Steven H. Comstock 33 Language Environment Concepts

� � �

LE Program Management, continued

� Multiple Enclaves

� A thread in an enclave can start up a whole separate enclave
within a process

� Since an enclave may only contain a single 'main', the
introduction of a new main program requires the initialization of a
new enclave, either in the current process or in a new process

� For example, a program might be passed a set of parameters
that describe

� A data base to analyze

� A set of relationships to analyze

� Where to pass or record the analysis

� The program could then kick off a separate enclave for each
such request

� Each such enclave could, in turn, be multi-threaded

� Then we would have a multi-enclaved, multi-threaded process

Copyright � 2012 by Steven H. Comstock 34 Language Environment Concepts

LE Program Management, continued

� Multiple Processes

� A thread can create a whole new process

� A group of processes is managed by a hidden construct called
a region or application (these words are not used in their
traditional sense here)

� When any process is started, it goes through process initialization,
enclave initialization, and initial thread creation

� And things progress from there

� So we could end up with an application containing multiple
processes, each of which contains multiple enclaves, with each
enclave's main program (and related subroutines) running
multi-threaded

� For current LE versions, only C programs can initiate multi-threading

� And these programs have to be POSIX-conforming, that is UNIX
programs ...

Copyright � 2012 by Steven H. Comstock 35 Language Environment Concepts

z/OS UNIX, and POSIX

� z/OS provides optional features that collectively are called z/OS UNIX
System Services (formerly: MVS OpenEdition)

� z/OS UNIX evolved based originally on the POSIX interface

� Portable Operating System Interface - defined by IEEE (Institute
of Electronic and Electrical Engineers, Inc.)

� Defines a minimum set of standards required to support
applications across various flavors of UNIX

� At one time, z/OS UNIX (or maybe one of its predeccessor
versions) was fully UNIX-branded (not clear about current POSIX
status or UNIX-branding) - point being: this is very similar to
classic UNIX (some purists deny this, but the differences don't
concern us here)

� Effectively, the presence of z/OS UNIX provides the functionality of
UNIX under TSO and in batch and also as connected by rlogin or
telnet

� UNIX-conforming applications can mostly port between UNIX
systems, including z/OS UNIX

� z/OS UNIX support requires Language Environment

Copyright � 2012 by Steven H. Comstock 36 Language Environment Concepts

z/OS UNIX and POSIX, continued

� C applications may be POSIX-conforming or not

� C POSIX-conforming applications may also use all LE functions

� C POSIX-conforming applications can perform pthread
("POSIX-thread") thread management functions

� C applications that are not POSIX-conforming cannot perform
these thread management functions

� POSIX is explicitly not supported under CICS or CMS

� PL/I and COBOL programs compiled using the LE compilers can run
under z/OS UNIX

� LE-conforming Assembler programs can run under z/OS UNIX

� In this course, we only mention UNIX / POSIX tangentially, where
required for completeness or accuracy

� Full discussion of z/OS UNIX takes place in other courses

� When z/OS is IPL'ed, z/OS UNIX is also always started

� If you do not use it, you must still allow it to initialize in a
minimal mode: there are parts of z/OS that expect UNIX to be
available

Copyright � 2012 by Steven H. Comstock 37 Language Environment Concepts

LE Program Management, Second Pass

� Aside from z/OS UNIX, then, we can visualize some of the
interrelationships this way:

Copyright � 2012 by Steven H. Comstock 38 Language Environment Concepts

sub sub

subsub

external (shared) data

enclave enclave

process

� Notes

� This represents the full model, which is not all
implemented in the current version of LE

� A thread can create another thread in the current
enclave, another enclave in the current process, or
another process in the current application

main

settings

LE runtime library routines

settings

thread

* stack storage
* condition

manager

thread

main . . .

external (shared) data

* stack storage
* condition

manager

thread

* stack storage
* condition

manager

message file and other shareable data

heap storageheap storage

DLL(s) DLL(s)

LE Program Management, Second Pass, p.2

� To recapitulate, LE manages programs and resources using this
conceptual model

Process

� Consists of: one or more enclaves, a message file, and the LE
runtime library routines

� There are no LE-supplied services for creating multiple enclaves
in a process in the current version of LE, but some CICS
processes and some Assembler processes can create multiple
enclaves in a process (discussed later)

� In the model, a thread in a process can create other processes,
although processes are independent of one another (no
hierarchical relationships)

� The resources managed at the process level, include

� Message file

� The Language Environmen run-time library

Copyright � 2012 by Steven H. Comstock 39 Language Environment Concepts

LE Program Management, Second Pass, p.3

� C programs can create a new process using fork() or spawn()

� The new process is in the same address space or a new address
space, depending on various environment variable settings

� Perform process initialization

� Perform enclave initialization

� Perform thread initialization

� Running with POSIX(ON), a C program can create a new thread in
the current enclave using pthread_ services

� When a thread runs, it runs under a TCB (Task Control Block)

� There can be more threads than TCBs (tasks) if the threads are
asynchronous: when a TCB finishes running one thread it can
run another thread; a thread waits until there is an available TCB

� This is the dispatching the z/OS UNIX kernel does

� Note that POSIX(ON) only affects pthread_ services, signaling
services, and in some situations, the order of search for DLLs

Copyright � 2012 by Steven H. Comstock 40 Language Environment Concepts

LE Program Management, Second Pass, p.4

� Aside from C programs, for applications only a single address space
is used:

� Assembler ATTACH service creates multiple processes

Process Process

Enclave Enclave
Thread Thread

ATTACH

� Actually creates new region, new process, new enclave, and new
thread; the attached program must be an LE MAIN program or a
non-LE program that takes no arguments

� Assembler LINK and EXEC CICS LINK services create multiple
enclaves (they are not multi-tasked: serial execution):

Process

Enclave Enclave
Thread Thread

LINK

� PL/I multi-tasking must run POSIX(OFF) but uses POSIX services
behind the scenes to create a new thread, no new enclave:

Process
Enclave

Thread Thread
CALL ... TASK

� Note: Enterprise PL/I does not support multi-tasking but it does
support mulit-threading, when running with POSIX(ON)

Copyright � 2012 by Steven H. Comstock 41 Language Environment Concepts

LE Program Management, Second Pass, p.5

� The LE program management conceptual model, continued

Enclave

� One MAIN routine and zero or more subroutines, including HEAP
storage, external files, DLLs, and shareable 'EXTERNAL' data

� the first invoked routine in an enclave is the main routine, all
subsequent routines are subroutines

� file sharing is not managed by LE (except for the message file
managed at the process level)

� file sharing across languages is not currently supported in LE

� heap storage is shared among all routines in an enclave

� Resources managed at the enclave level include

� Default date and time formats

� Current country setting

� National language setting

� Currency symbol, decimal separator, and thousands separator

� Setting of the century window

� The user area fields

� Heap storage

� If any thread sets / changes these values, they are changed for all
threads in the enclave

Copyright � 2012 by Steven H. Comstock 42 Language Environment Concepts

LE Program Management, Second Pass, p.6

� The LE program management conceptual model, concluded

Thread

� The basic line of instruction execution; each thread has its own
storage stack and condition manager

� A thread is created during enclave initialization, with its own
instruction counter, registers, stack and condition handling
mechanism

� Each thread shares all resources of an enclave; it does not own
its own storage but can address all storage in an enclave

� Resources managed at the thread level include

� Stack storage

� Condition manager

� Registers

� Parameters passed on invocation - initial thread only

� Message inserts

� Day of week, date and time values

� Platform id

� Random number generator seed

� If a thread changes any of these, it does not affect the values for
these on any other thread

� A thread is like an enhanced z/OS task

Copyright � 2012 by Steven H. Comstock 43 Language Environment Concepts

Multiple Processes, Enclaves, Threads

� Note that the full ability of multi-threading applications is not
available to all languages in the current version of LE

� But there is a variety of language-specific techniques:

� Multi-tasking in Assembler, using ATTACH

� Create multiple new processes in the address space

� Multi-processing in C using exec, fork, or spawn

� May create a new address space

� Multi-threading in C using pthread_create and related services

� Requires POSIX(ON), creates new threads in current enclave

� Multi-tasking in PL/I using CALL specifying one or more tasking
options (releases prior to Enterprise PL/I)

� Creates TCB-based tasks; requires POSIX(OFF)

� Multi-threading in Enterprise PL/I using ATTACH

� Creates POSIX threads; requires POSX(ON)

� There are some special cases where you can create what is called a
nested enclave (discussed later), but this is not true multi-enclave or
multi-thread behavior

� There are no plans to provide multi-threading services other than
through the C and Enterprise PL/I interfaces (that is, no CEE...
services)

Copyright � 2012 by Steven H. Comstock 44 Language Environment Concepts

LE and 64-bit Processes

� z/OS is IBM's premier 64-bit operating system for zArchitecture
machines

� To take advantage of 64-bit addressing, there are currently two
options:

� Assembler code can run in 64-bit addressing mode (AMODE)
whether or not it is LE-conforming Assembler

� C /C++ can run under either 64-bit LE or non-64-bit LE

� That is, there is a 64-bit version of LE and it currently supports only
C, C++, and Assembler

� Currently there is no communication allowed between 64-bit LE
applications and 31-bit LE applications

� We shall only reference 64-bit LE, and related topics, in passing

Copyright � 2012 by Steven H. Comstock 45 Language Environment Concepts

Introduction to XPLINK

� C, C++, and related languages, were originally designed to run on
machines that had a storage stack automatically implemented in
hardware

� This automatically stores environment information and
parameters for fast entry and exit to functions

� IBM mainframes do not include such a hardware assist, so each
subroutine and function is responsible for saving and restoring
register contents

� And for providing a storage area for called routines to use for
their saving and restoring logic, and so on

� For languages such as C/C++ which tend to have a large number of
short functions, this means the overhead of initialization and
termination for each function tend to take up a large percent of the
time spent in a function

� To provide more efficient linkages in this environment, IBM
introduced XPLINK ("eXtra Performance LINK) conventions that use
non-traditional module / function linkages

� Currently XPLINK is only used in certain environments, and
using it requires special versions of many routines

� All 64-bit LE support uses XPLINK

� Although 64-bit Assembler code does not generally use XPLINK

� In this course, we only reference XPLINK incidentally

Copyright � 2012 by Steven H. Comstock 46 Language Environment Concepts

