
Cross Program Communication in z/OS

The following terms that may appear in these course materials are trademarks or registered
trademarks:

Trademarks of the International Business Machines Corporation:

AIX, BookManager,CICS, DB2, DRDA, DS8000, ESCON, FICON, HiperSockets, IBM, ibm.com, IMS,
Language Environment, MQSeries, MVS, NetView, OS/400, POWER7, PR/SM, Processor Resource
/ Systems Manager, OS/390, OS/400, Parallel Sysplex, QMF, RACF, Redbooks, RMF, RS/6000,
SOMobjects, S/390, System z, System z9, System z10, VisualAge, VTAM, WebSphere, z/OS, z/VM,
z/VSE, z/Architecture, zEnterprise, zSeries, z9, z10

Trademarks of Microsoft Corp.: Microsoft, Windows

Trademarks of Micro Focus Corp.: Micro Focus

Trademark of American National Standards Institute: ANSI

Trademarks of America Online, Inc.: America Online, AOL

Trademarks of Quercus Systems: Personal REXX, REXXTERM

Trademark of Chicago-Soft, Ltd: MVS/QuickRef

Trademark of Phoenix Software International: (E)JES

Trademark of Triangle Systems: IOF

Trademarl of Syncsort Corp.: SyncSort

Trademark of CA: Endevor

Trademark of Serena Software International: ChangeMan

Registered Trademarks of Institute of Electrical and Electronic Engineers: IEEE, POSIX

Registered Trademarks of Corel Corporation: Corel, CorelDRAW, Corel VENTURA

Registered Trademark of Oracle Corporation: Oracle

Registered Trademark of The Open Group: UNIX

Trademarks of Sun Microsystems, Inc.: Java, EmbeddedJava, Enterprise JavaBeans, EJB, Java
Naming and Directory Interface, JavaBeans, JavaOS, JavaScript, JavaServer, JavaServerPages,
JSP, JDBC, JDK, JVM, J2EE, Sun Microsystems, 100% Pure Java

Registered Trademark of Linus Torvalds: LINUX

Registered Trademark of Unicode, Inc.: Unicode

Trademarks held on behalf of World Wide Web Consortium: W3C, XHTML, XSL, WebFonts

Trademark of Object Management Group: CORBA

Trademarks of Apple Computer: QuickTime, Safari

Trademarks of Adobe Systems, Inc.: Macromedia, PDF, Shockwave, Flash

Trademark of The Eclipse Foundation: Eclipse

Cross Program Communication in z/OS - Course Objectives

On successful completion of this class, the student, with the aid of the
appropriate reference materials, should be able to:

1. Code calling and called programs using one or more of these compilers:
* Enterprise COBOL
* XL C/C++ for z/OS
* Enterprise PL/I

or * High Level ASseMbler (HLASM) language

2. Define elementary and aggregate data types in all of these languages

3. Access JCL PARM data from a main program written in any of these
languages, and set the JCL return code value; access the parm data from a
subroutine written in any of these languages using the CEE3PRM or
CEE3PR2 services

4. Describe the general content of object modules in OBJ, XOBJ, and GOFF
formats

5. Call subroutines / external functions from each of these languages, statically
and dynamically, passing elementary and aggregate data items, passing by
reference, by content, and by value, and examining any returned value from
the subroutine, as possible for each language

6. Code subroutines in each of these languages, receiving data as it is passed
and passing back a return value as appropriate and possible, with an
objective of creating subroutines that can be called from programs written in
any of the four languages discussed here

7. Describe how argument lists are built and how parameter lists are received
in all four languages

8. Use the program binder to create load modules and program objects

9. Create and use programs with multiple entry points

10. Deal with variable numbers of arguments and parameters, as appropriate
to each language, and setting and recognizing omitted parameters where
possible

11. Where possible, share external data items across programs, modules,
and languages.

1

M520 / 3 Days These Materials Copyright � 2012 by Steven H. Comstock V3.1

Cross Program Communication in z/OS - Topical Outline

Day One

Introduction to the Course
Interesting Applications
Computer Exercise: Setting Up for the Labs 19

Defining Elementary Data Items
Data Types - zSeries Hardware

Character String
Packed Decimal
Binary Integer - halfword, fullword, doubleword
Floating Point - short, long, extended
Addresses
Other Data Types - Edited strings, Bit strings, Null terminated strings

Working With Null Terminated Strings
Rules for Names
Computer Exercise: Defining Elementary Items 55

Defining Data Aggregates
Data Alignment
Defining Aggregates - Assembler, COBOL, PL/I, C
Alignment - Another Perspective
Working With Halfword Prefixed Strings
Computer Exercise: Defining Aggregates ... 98

Accessing PARM data and Setting the Return Code
How the PARM field is set up
Accessing the PARM Field - Assembler, COBOL, PL/I, C
Accessing the PARM Field Using LE Services
Setting the Return Code
Computer Exercise: Getting the Parm and Setting the Return Code .. 115

Calling Subroutines Statically
Assembler
COBOL
PL/I
C
LE Services: CEEMOUT
What's Going On Here?
Computer Exercise: Static Calls ... 138

2

M520 / 3 Days These Materials Copyright � 2012 by Steven H. Comstock V3.1

Cross Program Communication in z/OS - Topical Outline, p.2.

Day Two

Object Code
Modules
Module Translations
Sections
Object Modules
Object Modules: XOBJ
Generated Object Modules

Passing Arguments and Receiving Returned Values
How Arguments Are Passed - Styles and Options
How Arguments Are Passed - Assembler, COBOL, PL/I, C
How Arguments Are Passed - Lessons

Receiving Parameters and Setting Return Values
Mainlines and Subroutines
Subroutine declarations
Declaring Parameters
Parameters - Assembler, COBOL, PL/I, C
Computer Exercise: Assemble / compile, bind subroutines 259

The Program Binder
Compiles and Binds
Assemble / Compile and Bind Data Flow
An Example
Program Binder PARM Options
Program Binder Control Statements: ENTRY, NAME
A Load Module
Program Binder Control Statements: INCLUDE, LIBRARY, REPLACE
How The Program Binder Works
Basic Maintenance Using the Program Binder
Computer Exercise: Program Binder and Maintenance 294

3

M520 / 3 Days These Materials Copyright � 2012 by Steven H. Comstock V3.1

Cross Program Communication in z/OS - Topical Outline, p.3.

Day Three

Alternate Entry Points
Why Have Alternate Entry Points?
Alternate Entry Points: Assembler, COBOL, PL/I, C
Alternate Entry Points - How Does It Work?
Program Binder control statement: ALIAS
Computer Exericse: Alternate Entry Points 316

External Data
External Data - Assembler, COBOL, PL/I, C
External Data - ILC

Calling Subroutines Dynamically
Dynamic Calls - An Introduction
Dynamic Calls - Assembler, COBOL, PL/I, C
Computer Exercse: Dynamic Calls ... 364

AMODE / RMODE Issues
z/OS Addressing
Specifying AMODE and RMODE

GOFF - The Generalized Object File Format
More About the Program Binder

Load Modules vs. Program Objects
Binder versions
Binder Parms
Binder Inputs and Outputs

Multi-Tasking and Program Reusability
Multi-Tasking
Dispatching
Reusable, Reenterable, Refreshable Attributes
LPA, JPA, LLA
The Search for Modules

Conclusions

4

M520 / 3 Days These Materials Copyright � 2012 by Steven H. Comstock V3.1

Languages Selection

� This course is multi-lingual, but we don't talk about programming
languages you will not be encountering

� So here is the time for you to specify which languages you are
interested in exploring during this class

� Based on your selection(s) we will omit parts of lecture and labs that
are not relevant to your work

Language

______ Assembler

______ C

______ COBOL

______ PL/I

5

M520 / 3 Days These Materials Copyright � 2012 by Steven H. Comstock V3.1

This page intentionally left almost blank.

6

M520 / 3 Days These Materials Copyright � 2012 by Steven H. Comstock V3.1

Introduction

Copyright � 2012 by Steven H. Comstock 7 Introduction

Section Preview

� Introduction to the class

� Interesting Applications

� Coding Notes For Examples in the Class

� Setting Up for the Labs (Machine Exercise)

Interesting Applications

� Applications that are simple can be written as self-contained single
programs as an on-line transaction or a batch job-step

� But interesting (read: complex) applications often need to be written
as a mainline (driver) program with one or more subroutines

� The mainline calls subroutines as needed

� And subroutines can in turn call other subroutines

� A good design point is to compartmentalize each subroutine to
perform a single function

� If that function can be broken down into sub-pieces, put those
pieces into separate subroutines

� This way, updates and maintenance are localized and simplified

Copyright � 2012 by Steven H. Comstock 8 Introduction

Interesting Applications, 2

� Typically when a program (mainline or subroutine) calls a
subroutine, the caller passes data to the callee

� The called program then accesses the passed data, and may
change the passed data

� The called program may also return a value to the caller

� Life is sweet and simple if all programs are written in a single
language

� But this is often not the case:

� High level language programs, written in COBOL or PL/I, say,
may need to call subroutines that were written in Assembler to
accomplish some function that cannot be done in the high level
language

� Conversely, many functions are accomplished more simply in a
high level language than in Assembler

� Certain computations may be done more naturally in PL/I or C
(engineering applications often need to work with math functions
and imaginary numbers, for example, tasks not well suited to
COBOL)

� The person writing the subroutine may prefer to code in a
particular language that is not the same as the language of the
calling program

Copyright � 2012 by Steven H. Comstock 9 Introduction

Interesting Applications, 3

� In this class we explore the mysteries and details of coding
applications written using external subroutines

� This includes programs written in these languages

� Assembler

� COBOL

� PL/I

� C

� We examine invoking external routines written in the same language
as the invoker and invoking routines written in different languages
from the invoker

� We are specifically focused on the most current compilers and
running in the z/OS LE environment

� We assume you are proficient in at least one of the four
languages discussed, but that you may not be familiar with how
to work in all of them

� So we have provided enough details and clues to enable you to
succeed in the labs that use languages that you might not be
fluent in

Copyright � 2012 by Steven H. Comstock 10 Introduction

Interesting Applications, 4

� In this class we will explore ...

� Formats of data items inherent to z-series machines and how to
declare them in the different languages

� Character string

� Binary

� Packed decimal

� Floating point

� Formats of aggregates

� Structures

� Arrays

� Other data types

� Null-terminated strings

� Pointers / addresses

� Common (External) data

Copyright � 2012 by Steven H. Comstock 11 Introduction

Interesting Applications, 5

� In this class we also explore ...

� How to access the PARM field from the EXEC statement that
invokes a main program

� How to set a return code that is passed back to z/OS

� How to invoke subroutines

� Syntax of call / function reference in multiple languages
(Assembler, COBOL, PL/I, C)

� Ways to pass data

� Issues of static versus dynamic calls

� How to access a value returned from a subroutine

� How to code subroutines

� Ways to catch data

� When you can and cannot change passed data

� How to pass back a return value

� How to code subroutines so that they are callable from all the
languages being discussed

Copyright � 2012 by Steven H. Comstock 12 Introduction

Interesting Applications, 6

� We also explore related issues of subroutines

� Object code structure and components

� Generalized Object Format (GOFF)

� ENTRY statements in source

� Executable module structure and components

� Program objects

� How the program binder works

� Module attributes

� Using LE and z/OS UNIX services to invoke subroutines

� What we don't cover (but allude to here and there):

� Multi-tasking, multi-threading

� XPLINK

Copyright � 2012 by Steven H. Comstock 13 Introduction

Coding Notes For Examples in the Class

� We assume you are using the most recent versions of compilers, the
Assembler, z/OS, Language Environment, and the program binder

� However, most of the discussion is relevant to earlier versions of
each of these products

� Newer versions of these products will be available from time to
time and it's good to stay current in your reading

� Where it is especially critical, versions and levels of products
will be specified

� We are concerned with having lots of correct coding examples

� And we want them to be complete enough for you to use these
examples as models / starting points back on the job

� But, we do not want to clutter up examples with lines of code
that should be clear to experienced programmers

� For example, we will not show declarations of data items unless
it is necessary for clarity

� To simplify the examples, therefore, we have put on these
following pages assumptions you can make about unshown
segments of a program

Copyright � 2012 by Steven H. Comstock 14 Introduction

Coding Notes For Examples in the Class - Assembler

� In Assembler examples, we will not show standard save area linkage
code unless it is required to demonstrate some aspect of the
example

� We will not show the LE Assembler macros, but we will specify if
an Assembler example is LE conforming or not, if it makes a
difference in behavior

� Generally speaking, everything discussed here works for
LE-conforming Assembler, while non-LE conforming Assembler
can:

� Call LE COBOL subroutines directly with a lot of overhead or call
intermediate routines to first establish the LE environment

� Call LE PL/I subroutines only using intermediate routines to first
establish the LE environment

� Call LE C subroutines only using intermediate routines to first
establish the LE environment

� We will not necessarily show the target of branch instructions, if the
content of the code is not central to the example

� The following data names may be used in examples, assuming
definitions as shown:

fc dc 12x'00' for LE feedback

dest dc f'2' for LE message routing

dblwrd dc d'0' for conversions

Copyright � 2012 by Steven H. Comstock 15 Introduction

Coding Notes For Examples in the Class - COBOL

� In COBOL examples, we will not show any divisions not necessary
for understanding of an example

� We assume familiarity with COBOL program structure

� We will not necessarily show the target of "perform" statements, if
the content of the code is not central to the example

� The following data names may be used in examples, assuming
definitions as shown:

01 fc pic x(12) value low-values.

01 dest pic s9(9) binary value 2.

Copyright � 2012 by Steven H. Comstock 16 Introduction

Coding Notes For Examples in the Class - PL/I

� In PL/I examples, we will not show any code not necessary for
understanding of an example

� We assume familiarity with PL/I program structure

� We will not generally show declarations for builtin functions nor
LE service routines

� We will not necessarily show the target of "call" statements, if the
content of the code is not central to the example

� The following data names may be used in examples, assuming
definitions as shown:

dcl fc char(12) init(low(12));

dcl dest fixed binary(31) init(2);

� There are lots of special cases and options in PL/I not covered here
(for example, constructs such as unions and passing arrays that are
not CONNECTED)

� But we do cover the vast majority of real world arguments and
parameters

� Similar remarks apply to C ...

Copyright � 2012 by Steven H. Comstock 17 Introduction

Copyright � 2012 by Steven H. Comstock 18 Introduction

Coding Notes For Examples in the Class - C

� In C examples, we will not show any code not necessary for
understanding of an example

� We assume familiarity with C program structure

� All C examples may or may not also apply to C++

� We will not generally show all #includes, unless necessary to
demonstrate some aspect of the example; you need to ensure you
have all necessary #include statements in any code you write; be
sure to check these:

� #include <leawi.h> for LE services support

� #include <decimal.h> for packed decimal support

� We will not necessarily show the target of function references, if the
content of the code is not central to the example

� Examples use standard C notations; but actual code in the labs uses
trigraphs, mostly: "??(" for "[" and "??)" for "]"

� The following data names may be used in examples, assuming
definitions as shown:

_FEEDBACK fc;

long int dest = 2;

long int i;

long int j;

long int k;

Computer Exercise: Setting Up for the Labs

This machine exercise is designed to provide setup for all the remaining
class exercises.

First, you need to run M520STRT, a supplied REXX exec that will prompt
you for the high level qualifier (HLQ) you want to use for your data set
names; the exec uses a default of your TSO id, and that is usually fine. Then
the exec creates data sets and copies members you will need.

From ISPF option 6, on the command line enter:

===> ex '__________.train.library(m520strt)' exec

A panel displays for you to specify the HLQ for your data sets, with your TSO
id already filled in. Press <Enter> and you get a panel telling you setup has
been successful. Press <Enter> again and you are back to the ISPF
command panel.

The allocated data sets:

<hlq>.TR.CNTL for all your JCL

<hlq>.TR.COBOL for all COBOL source code

<hlq>.TR.SOURCE for all other source code

<hlq>.TR.LOAD for load modules

<hlq>.TR.PDSE for program objects (if supported in your shop)

Copyright � 2012 by Steven H. Comstock 19 Introduction

This page intentionally left almost blank.

Copyright � 2012 by Steven H. Comstock 20 Introduction

DataElements

Copyright � 2012 by Steven H. Comstock 21 Data Elements

Section Preview

� Defining Elementary Data Items

� General Concerns

� Data Types - zSeries Hardware

� Data Types

� Character String, and code pages

� Packed Decimal

� Binary Integer - halfword, fullword, doubleword

� Floating Point - short, long, extended

� Addresses / Pointers

� Other Data Types

� Edited strings

� Bit strings

� Null terminated strings

� Working With Null Terminated Strings

� Rules for Names

� Defining Elementary Items (Machine Exercise)

General Concerns

� We begin our discussion with an examination of data types

� What data types are inherent in the hardware

� How does each language specify those data types

� What data types are specific to particular languages

� We discuss each elementary data type and how to define an item of
the type in each of the languages we are concerned with

� Including an example of an initialized item and an uninitialized
item

� Note that we do not discuss issues of 64-bit addressability except in
the most tangential ways

� The issues surrounding 64-bit addressability deserve their own
discussion

Copyright � 2012 by Steven H. Comstock 22 Data Elements

Data Types - zSeries Hardware

� The zSeries class hardware works with these data types

� Character string of specific, fixed length

� Encoded in EBCDIC, ASCII, or Unicode

� Packed decimal data of specific, fixed length (1 to 16 bytes
possible)

� Binary integer data

� Halfword - two bytes

� Fullword - four bytes

� Doubleword - eight bytes (zSeries machines)

� Floating point data, in hexadecimal floating point, binary floating
point (IEEE) formats (also, decimal floating point, introduced with
z9 machines and z/OS 1.8; this is not discussed in this course)

� Short floating point - four bytes

� Long floating point - eight bytes

� Extended floating point - sixteen bytes

� Addresses (pointers) - four bytes (in 24-bit and 31-bit addressing
modes) or eight bytes (in 64-bit addressing mode)

Copyright � 2012 by Steven H. Comstock 23 Data Elements

Data Types - Character String

� A series of consecutive bytes in memory, containing any data,
length is determined by application designer

Language Defining characteristics Examples

Assembler
DC or DS instruction with
data type 'C', possibly
explicit length, and for
DC an explicit value

Ty_fld DC C'J2'

TransCd ds cl4

COBOL
PIC clause including at
least one A or X, possibly
with a Value clause
(USAGE is implicitly
DISPLAY)

01 Ty-fld pic xx
value 'J2'.

01 TransCd pic x(4).

PL/I
DECLARE of type CHAR,
possibly with an INIT
clause

dcl Ty_fld char(2)
init('J2');

Dcl TransCd char(4);

C/C++
define as a char array;
(null-terminated strings
discussed later); initial
value done by
assignment (=) or some
strcpy or memcpy type
function

char Ty_fld [2] = "J2";

char TransCd [4];

Copyright � 2012 by Steven H. Comstock 24 Data Elements

Copyright � 2012 by Steven H. Comstock 25 Data Elements

Data Types - Character String, 2

� Generally speaking, character strings are just strings of bits

� The assignment of the bits to characters is specified by the
codepage currently in use

� By default, mainframe programs use EBCDIC (Extended Binary
Code for Decimal Interchange Characters)

� There are many alternate EBCDIC codepages, depending if you
need characters from various languages

� In modern systems, you may send and receive data that is
encoded using other schemes

� Most commonly ASCII (American Standard Code for Information
Interchange) or its international counterpart ISCII (International
Standard Code for Information Interchange)

� While a growing number of applications use Unicode, in one of its
three formats (UTF-8, UTF-16, and UTF-32) since Unicode
support is required for HTML 4.0, XML, Java, Web Services, and
other recent technologies

� UTF stands for "Uniform Transformation Code"

� An older encoding scheme that most IBM products support is
called Double Byte Character Set (DBCS), but this seems to be
fading in interest

� Discussion of codepages is beyond the scope of this course, but an
awareness of codepage issues is important for modern applications

Data Types - Character String, 3

� zSeries hardware has instructions added to compare, pack, unpack,
move, and otherwise work with Unicode data

� And some to work with ASCII

� And some to convert between various encodings

� The language products under discussion also support various
codepage work

� But we leave that discussion for our course on
internationalization

Copyright � 2012 by Steven H. Comstock 26 Data Elements

Data Types - Packed Decimal

� A series of consecutive bytes in memory, containing two decimal
digits in each byte, except the last hex digit is the sign (Hex A-F)

Language Defining characteristics Examples

Assembler
DC or DS instruction with
data type 'P', possibly
explicit length, and for
DC an explicit value

Amount DC p'35.50'

Tax DS PL4

COBOL
PIC clause including one
or more 9s, possibly a V
(for decimal location),
possibly with a Value
clause, and a USAGE of
PACKED-DECIMAL,
COMPUTATIONAL-3, or
COMP-3

01 Amount pic S999v99
comp-3

value +35.50.

01 Tax pic s9(5)v99
packed-decimal.

PL/I
DECLARE of type FIXED
DECIMAL(m,n), possibly
with an INIT clause

dcl Amount
fixed decimal(5,2)

init(35.50);

Dcl Tax dec fixed(7,2);

C/C++
Not inherent in C, but for
z/OS, include the
decimal.h header then
define as decimal(m,n);
initial value done by
assignment

#include <decimal.h>
.
.
.
decimal(5,2) Amount

= 35.50d;

decimal(7,2) Tax;

Copyright � 2012 by Steven H. Comstock 27 Data Elements

Data Types - Binary Integer, halfword

� Two bytes, halfword aligned, containing a binary number

Language Defining characteristics Examples

Assembler
DC or DS instruction with
data type 'H', and for DC
an explicit value

Counter DC H'0'

No_rcs DS h

COBOL
PIC clause including 1-4
9s, possibly with an S
(for sign), possibly with a
Value clause, and a
USAGE of COMP,
COMPUTATIONAL,
COMP-4,
COMPUTATIONAL-4,
COMP-5,
COMPUTATIONAL-5, or
BINARY

01 Counter pic S9999
binary
value +0.

01 No-rcs pic s9(4)
comp.

PL/I
DECLARE of type FIXED
BINARY(15), possibly
with an INIT clause

dcl Counter
fixed binary(15)
init(0);

Dcl No_rcs
bin fixed(15);

C/C++
declare as short int, short,
signed short, signed short
int, unsigned short int, or
unsigned short; any initial
value comes from an
assignment

short int Counter = 0;

signed short No_rcs;

� Also note that PL/I, C, and Assembler can work with a one-byte
binary field, even though that is not a native hardware construct

Copyright � 2012 by Steven H. Comstock 28 Data Elements

Data Types - Binary Integer, fullword

� Four bytes, fullword aligned, containing a binary number

Language Defining characteristics Examples

Assembler
DC or DS instruction with
data type 'F', and for DC
an explicit value

Quantity DC F'0'

No_ents DS f

COBOL
PIC clause including 5-9
9s, possibly with an S
(for sign), possibly with a
Value clause, and a
USAGE of COMP,
COMPUTATIONAL,
COMP-4,
COMPUTATIONAL-4,
COMP-5,
COMPUTATIONAL-5, or
BINARY

01 Quantity pic S9(9)
binary
value +0.

01 No-ents pic s9(9)
comp.

PL/I
DECLARE of type FIXED
BINARY(31), possibly
with an INIT clause

dcl Quantity
fixed binary(31)
init(0);

Dcl No_ents
bin fixed(31);

C/C++
declare as int, long, long
int, signed long, signed int,
signed long int, unsigned
int, unsigned, unsigned
long int, or unsigned long;
any initial value comes
from an assignment

int Quantity = 0;

signed int No_ents;

Copyright � 2012 by Steven H. Comstock 29 Data Elements

Data Types - Binary Integer, doubleword

� Eight bytes, doubleword aligned, containing a binary number

Language Defining characteristics Examples

Assembler
DC or DS instruction with
data type 'FD', and for DC
an explicit value

Quantity DC FD'0'

No_ents DS fd

COBOL
PIC clause including
10-18 9s, possibly with an
S (for sign), possibly with
a Value clause, and a
USAGE of COMP,
COMPUTATIONAL,
COMP-4,
COMPUTATIONAL-4,
COMP-5,
COMPUTATIONAL-5, or
BINARY

01 Quantity pic S9(18)
binary
value +0.

01 No-ents pic s9(18)
comp.

PL/I
DECLARE of type FIXED
BINARY(63), possibly
with an INIT clause

dcl Quantity
fixed binary(63)
init(0);

Dcl No_ents
bin fixed(63);

C/C++
declare as long long; any
initial value comes from
an assignment

long long Quantity = 0;

signed long long
No_ents;

Copyright � 2012 by Steven H. Comstock 30 Data Elements

Data Types - Floating Point, short

� Four bytes, fullword aligned, containing a short floating point
number in hexadecimal floating point (HFP) or binary floating point
(BFP, the IEEE standard) format

Language Defining characteristics Examples

Assembler
DC or DS instruction with
data type 'E' or 'EB',
respectively, and for DC
an explicit value (decimal
or with exponent)

Distance DC E'5.25'

In_D DS E

COBOL
No PIC clause, possibly a
Value clause, and a
USAGE of COMP-1 or
COMPUTATIONAL-1;
BFP is not supported

01 Distance comp-1
value 5.25E1.

01 In-D comp-1.

PL/I
DECLARE of type FLOAT
DECIMAL(6) or FLOAT
BINARY(21), possibly
with INIT; compiler option
DEFAULT(IEEE) makes all
floating point BFP

dcl Distance
float decimal(6)
init(5.25E1);

Dcl In_D dec float(6);

C/C++
declare as float (decimal
or with exponent); any
initial value done by
assignment; compiler
option FLOAT(IEEE)
makes all floating point
items BFP

float Distance = 5.25;

float In_D;

Copyright � 2012 by Steven H. Comstock 31 Data Elements

Data Types - Floating Point, long

� Eight bytes, doubleword aligned, containing a long floating point
number in hexadecimal floating point (HFP) or binary floating point
(BFP, the IEEE standard) format

Language Defining characteristics Examples

Assembler
DC or DS instruction with
data type 'D' or 'DB',
respectively, and for DC
an explicit value (decimal
or with exponent)

Area_1 DC D'75.2E2'

In_A DS D

COBOL
No PIC clause, possibly a
Value clause, and a
USAGE of COMP-2 or
COMPUTATIONAL-2;
BFP is not supported

01 Area-1 comp-2
value 75.2E2.

01 In-A comp-2.

PL/I
DECLARE of type FLOAT
DECIMAL(16) or FLOAT
BINARY(53), possibly
with INIT; compiler option
DEFAULT(IEEE) makes all
floating point BFP

dcl Area_1
float decimal(16)
init(75.2E2);

Dcl In_A dec float(16);

C/C++
declare as double
(decimal or with
exponent); any initial
value done by
assignment; compiler
option FLOAT(IEEE)
makes all floating point
items BFP

double Area_1 = 75.2E2;

double In_A;

Copyright � 2012 by Steven H. Comstock 32 Data Elements

Data Types - Floating Point, extended

� 16 bytes, doubleword aligned, containing an extended floating point
number in hexadecimal floating point (HFP) or binary floating point
(BFP, the IEEE standard) format

Language Defining characteristics Examples

Assembler
DC or DS instruction with
data type 'L' or 'LB',
respectively, and for DC
an explicit value (decimal
or with exponent)

Vol_1 DC L'18.7E16'

In_V DS L

COBOL Not supported

PL/I
DECLARE of type FLOAT
DECIMAL(33) or FLOAT
BINARY(109), possibly
with INIT; compiler option
DEFAULT(IEEE) makes all
floating point BFP

dcl Vol_1
float decimal(33)
init(18.7E16);

Dcl In_V dec float(33);

C/C++
declare as long double ;
any initial value done by
assignment (decimal or
with exponent); compiler
option FLOAT(IEEE)
makes all floating point
items BFP

long double Vol_1
= 18.7E16;

long double In_V;

Copyright � 2012 by Steven H. Comstock 33 Data Elements

Data Types - Addresses

� Four bytes, fullword aligned, containing a 24-bit or 31-bit memory
address; an unsigned integer

� 64-bit addressing is only discussed tangentially in this course

� Addresses are used in many different ways, including passing
arguments and receiving parameters

Assembler

� In Assembler, you can define address constants ("adcons") of
types A, V, Y, S, Q, R, and J (a suffix of "D" indicates a 64-bit
address)

� A-type adcons (A, AD) can contain

� a positive integer

� an address of a data item in your program

� an address of an instruction in your program

� V-type adcons (V, VD) can contain

� an address of an external subroutine

� an address of an external data item

� Y-type adcons, S-type adcons, R-type adcons (R, RD), and
J-type adcons (J, JD) are not discussed in this course

� Q-type adcons (Q, QD), which contain offsets, are discussed
later

Copyright � 2012 by Steven H. Comstock 34 Data Elements

Data Types - Addresses, 2

COBOL

� In a COBOL program, you can define a data item as having a
usage of POINTER (no picture clause, and no VALUE clause)

� You may also use the ADDRESS OF special register for linkage
section items with levels 01 and 77

� The SET construct lets you populate POINTER items and
ADDRESS OF values, for example (note that for SET, the
direction of data movement is from the second operand to the
first):

set mess-pointer to address of next-item

set address of table to tab-pointer

set hold-ptr to work-ptr

� Two pointers, two ADDRESS OF registers, or a pointer and an
ADDRESS OF register can be compared, but only for equals or
not equals:

if hold-ptr not equal next-ptr ...

� The special value NULL (or NULLS) is used to indicate that a
particular pointer or ADDRESS OF register does not currently
contain a valid address; nothing is equal to, or not equal to,
NULL, it just IS NULL or it IS NOT NULL

if address of arg-3 is null ...

set msg-ptr to null

Copyright � 2012 by Steven H. Comstock 35 Data Elements

Data Types - Addresses, 3

COBOL, continued

� Both POINTER and ADDRESS OF, when not NULL, refer to an
address in memory of a data item

� PROCEDURE-POINTER refers to an address in memory of an
executable instruction (a program entry point), as does
FUNCTION-POINTER

� In these examples, the first operand is always a
procedure-pointer

set handler-ptr to other-prcd-ptr

set handler-ptr to entry pgm-name

set work-sub-ptr to entry 'MYSUB'

set work-sub-ptr to null

set work-sub-ptr to pgm-ptr

� In this last case, "pgm-ptr" must contain the address of another
program's entry point, as obtained from some non-COBOL
program (as a parameter, say)

� PROCEDURE-POINTER data types are eight bytes: a four byte
entry point address and a four byte work area

� FUNCTION-POINTER data elements are four bytes: just an entry
point address

Copyright � 2012 by Steven H. Comstock 36 Data Elements

Data Types - Addresses, 4

� Internally, COBOL uses a full word (4 bytes) of binary zeros
(low-values) for the NULL value (that is, x'00000000')

� COBOL programs are not allowed to do address arithmetic (add or
subtract to a POINTER or PROCEDURE-POINTER)

� You can play games with REDEFINES, but don't

Copyright � 2012 by Steven H. Comstock 37 Data Elements

Data Types - Addresses, 5

PL/I

� PL/I programs can define data items with type POINTER

� These data items can contain addresses of data, of entry points,
or a NULL or SYSNULL value

� Some pointer arithmetic is supported (add and subtract; also
POINTERADD builtin function)

� Comparisons of pointer data are only valid for equal or not equal

� Values can be placed into pointer data items in many ways,
including use of builtin functions such as ADDR, POINTER,
POINTERADD, and so on, as well as through READ, LOCATE and
ALLOCATE statements, and assignment (as long as data types
are appropriate)

� NULL is x'FF000000', SYSNULL is x'00000000'

� The Enterprise PL/I compiler has a compile-time option that can
be set:

� DEFAULT(NULLSYS) -> NULL() builtin function should return
x'00000000'

� DEFAULT(NULL370) -> NULL() builtin function should return
x'FF000000' (this is the IBM-supplied default)

Copyright � 2012 by Steven H. Comstock 38 Data Elements

Data Types - Addresses, 6

C

� C has a pointer data type; pointers are usually defined by
indicating what type of object is being pointed at by that pointer,
for example

float * sub_ptr;

� defines a data item, "sub_ptr", that is a pointer to short floating
point data (any short floating point data item)

� However, if you define a pointer of type void, that pointer can
point to any type of data item

void * vdb_ptr;

� defines data item, "vdb_ptr", that can point to any data item

� A pointer is given a value through an assignment statement, for
example:

sub_ptr = &total;

� "sub_ptr" now contains the address of "total"; "total" must have
been defined as type float

� The "&" is the "address of" operator

� A pointer may be assigned to another pointer (see next page)

Copyright � 2012 by Steven H. Comstock 39 Data Elements

Data Types - Addresses, 7

C, continued

� You can access the data to which a pointer refers using the
indirection operator, *:

sub_total = *sub_ptr;

� puts into "sub_total" the value pointed at by "sub_ptr"

� You can go the other way, too:

*sub_ptr = sub_total;

� puts the value in "sub_total" into the variable pointed at by
"sub_ptr"

� Assignments are interesting:

sub_ptr = another_ptr;

� puts the address in "another_ptr" into "sub_ptr"

*sub_ptr = *another_ptr;

� puts the value in the variable pointed at by "another_ptr" into the
variable pointed at by "sub_ptr"

Copyright � 2012 by Steven H. Comstock 40 Data Elements

Data Types - Addresses, 8

C, continued

� You can do address arithmetic on C/C++ pointers, and you can
do any kind of compares

� A value of zero (x'00000000') is the NULL pointer, and, as with
COBOL and PL/I, in C a value of NULL in a pointer indicates the
pointer is not currently valid

Copyright � 2012 by Steven H. Comstock 41 Data Elements

Other Data Types

� COBOL and PL/I have the ability to describe edited fields using
PICTURE clauses, specifying how data should be formatted

� It's best to either format the data first then send the result as a
character string, or to pass the raw data as a non-edited inherent
data type and have it edited in the called program

� In other words, do not try to pass data items with edit pictures in
them as arguments to an external program (although it can be
done in a few cases)

� LE services use a variety of data types, most of which we've already
discussed

� For C programmers, these data types are included in the leawi.h
header file, and those are freely available for use anywhere in a
C program

� Probably best to use them just for LE services, though, to
maximize the portability of your code

� In our examples, we use LE data types when we demonstrate
using LE services

� Otherwise, we use C data types, even to the point of creating
our own structures, instead of LE defined data types, when
our examples do not involve using LE services

Copyright � 2012 by Steven H. Comstock 42 Data Elements

Other Data Types - Bit Strings

� Although all computer usable data is simply a string of bits, we
normally store data in the patterns discussed up to this point

� The various languages we are working with have varying degrees of
ability to work with bit strings

� Assembler - you can define data to be type B and specify bit
offsets and bit lengths; instructions are available to set on, set
off, and test one or more bits in storage or in a register

� COBOL - currently has no inherent bit string data type support,
although the ability to define hexadecimal literals provides some
bit-related capability

� PL/I - can define data of type BIT string (both fixed length and
variable length), and there are builtin functions to do bit
manipulation

� C - can assign names to bits in a byte, and some functions can
work with bit strings

� From our perspective, for passing and receiving data, we
recommend you pass character strings and let the invoked program
interpret the bits, rather than trying to pass bit string data

Copyright � 2012 by Steven H. Comstock 43 Data Elements

Other Data Types - Null Terminated Strings

� Among the languages under discussion here, the null-terminated
string is peculiar to C (and C++)

� In these languages, a character string is an array of one byte
characters of arbitrary length

� The data is terminated by the appearance of a null character
(x'00') in the string, as opposed to some predetermined length

� For example, defining a field as char[4] = "Ver2" will generate 4
bytes and initialize the string to Ver2, with no terminating null;
but char[5]="One" will reserve 5 bytes and initialize the string to
Onex'00??' (characters One, a null, and one indeterminate byte)

� The implication is that when C/C++ and some other language pass
character strings between them, the authors of the program must
agree in advance what type of strings will be used

� For traditional character string, C/C++ needs to define an array of
the expected size and use precise memcpy type functions to
ensure padding to the specified length is done on the right with
blanks (spaces), and to ensure that truncation occurs at the
specified length

� For null-terminated strings, non-C programs must append a null
or remove a trailing null or scan the string for a null, depending
on the situation

� The mapping between string types is not difficult, either way, just
some extra care that must be taken

Copyright � 2012 by Steven H. Comstock 44 Data Elements

Defining Null Terminated Strings

� You can define null-terminated strings in any language, and you can
convert between fixed length strings and null-terminated strings in
any language

� In Assembler, define a DS of type C, followed by a DC x'00':

N_string ds 0CL12
dc CL11'Here we are'
dc x'00'

� However, you can also code the same thing this way:

N_string ds CL11'Here we are',x'00'

� And John Ehrman of IBM suggests a two-step approach:

� Early in your code set up a SETC to define a null byte:

&N SetC (BYTE 0)

� Wherever you want to have a null terminated string, append this
character in the value part:

N_string dc c'Here we are&N'

� This lets the length attribute include the null character
automatically

Copyright � 2012 by Steven H. Comstock 45 Data Elements

Defining Null Terminated Strings, 2

� In COBOL, define an item with pic x's then give a value with a
z-type literal:

01 N-string pic x(12) value z'Here we are'.

� In Enterprise PL/I, you can declare a string as type VARYINGZ;
one more byte of storage is allocated than the specified length:

dcl N_string char(11) varyingz init('Here we are');

� In C, define an item with type char[nn] and it is implicitly
null-terminated:

char N_string [12] = "Here we are";

Copyright � 2012 by Steven H. Comstock 46 Data Elements

Working With Null Terminated Strings

� There are two essential activities here

� Given a traditional character string, convert this to a null
terminated string

� In place, or copy to a work area; must be room for null character
in addition to string

� Find displacement of last blank (hint: often best to reverse the
string and find the first non-blank in the reversed string)

� Replace the last blank with a null character (x'00')

� Given a null terminated string, convert this to a traditional
character string

� Scan string to find null, then replace the null with a blank (x'40')

� Alternatively, copy to target up to (but not including) the null; pad
rest of target with blanks

� We examine how to do this in each of our covered languages

� Note that these code samples represent one way to accomplish
these tasks, and they have been tested, but there are certainly
many ways to accomplish these tasks

Copyright � 2012 by Steven H. Comstock 47 Data Elements

Working With Null Terminated Strings - Assembler

� Assume character string in 'work_string', defined as CL30, and need
to build a null-terminated string in 'out_string', defined as CL31; also
'back_string' is defined as CL30:

* populate target string
mvc out_string(30),work_string
mvi out_string+30,x'00'
la 1,back_string+30
la 3,back_string
la 4,out_string+30

* reverse string into back_string
mvcin back_string,work_string+29

* find first non_blank
trt back_string,nonblank_table

* calculate address and move null into out_string
sr 1,3
sr 4,1
mvi 0(4),x'00'

.

.

.
nonblank_table dc 256x'01'

org nonblank_table+c' '
dc x'00'
org

.

.

.

Copyright � 2012 by Steven H. Comstock 48 Data Elements

Working With Null Terminated Strings - Assembler, 2

� Now, assume 'out_string' is defined as CL31, it contains a null
terminated string, which we are to convert to a traditional string into
'work_string'

mvc work_string,spaces
xr 0,0
la 2,work_string
la 3,out_string

repeat ds 0h
mvst 2,3
bc 1,repeat
mvi 0(2),c' '

� Assembler programmers should be aware of the C-Assist
instructions:

� CLST - Compare Logical STring; lets you compare two null
terminated strings

� CUSE - Compare Until Substring Equal; searches two null
terminated strings looking for matching substrings of a specified
length

� MVST - MoVe STring; copies a null terminated string, stopping
after moving the null

� SRST - SeaRch STring; search a string looking for the first
occurrence of a character

Copyright � 2012 by Steven H. Comstock 49 Data Elements

Working With Null Terminated Strings - COBOL

� Assume character string in 'work-string', defined as pic x(30), and
need to build a null-terminated string in 'out-string', defined as pic
x(31); also 'back-string' is defined as pic x(30) and space-ctr as pic
s9(4) binary:

move 0 to space-ctr
move spaces to out_string(1:30)
move function reverse(work-string)

to back-string
inspect back-string tallying space-ctr

for leading spaces
move work-string (1: 30 - space-ctr),

to out-string(1: 30 - space-ctr)
move x'00' to out-string(31 - space-ctr:1)

� Now, assume 'out-string' is defined as pic x(31), it contains a null
terminated string, which we are to convert to a traditional string into
'work-string'

move spaces to work-string
string out-string delimited by x'00'

into work-string

Copyright � 2012 by Steven H. Comstock 50 Data Elements

Working With Null Terminated Strings - PL/I

� Assume character string in 'work_string', defined as char(30), and
need to build a null-terminated string in 'out_string', defined as
char(30) varyingz:

� To find the last space, we work back from the end

dcl x fixed bin(15) init(0);
dcl lb_found bit(1) init('0'B);
.
.
.
out_string = ' ';
lb_found = '0'B;
do x = 30 to 1 by -1 until (lb_found);

if substr(work_string, x, 1) �= ' '
then lb_found = '1'B;

end;

substr(out_string,1, x + 1) =
substr(work_string, 1, x) || '00'x;

� Now, assume 'out_string' is defined as char(30) varyingz, it contains
a null terminated string, which we are to convert to a traditional
string into 'work_string':

work_string = substr(out_string,1);

Copyright � 2012 by Steven H. Comstock 51 Data Elements

Working With Null Terminated Strings - C

� Assume a standard character string in 'work_string', defined as
char[30], and need to build a null-terminated string in 'out_string',
defined as char[31]:

short int i;
short int j;
.
.
.
for (i=0;i<30;i++) out_string[i] = work_string[i];
for (i=29;i>0;i--)

{
if (out_string[i] != ' ')

{
out_string[i+1] = '\0';
break;

}
}

if (i==0) out_string[0] = '\0';

� Now, assume 'out_string' is defined as char[31], it contains a null
terminated string, which we are to convert to a traditional string into
'work_string', which is defined as char [30]

for (j=0;j<30;j++) work_string[j] = ' ';
i = strlen(out_string);
for (j=0;j<i;j++) work_string[j] = out_string[j];

Copyright � 2012 by Steven H. Comstock 52 Data Elements

Rules For Names

� Just as a convenience, we've summarized the rules for creating user
names for data items in the languages we are examining

Assembler

� 1-63 alphanumeric, national (@, #, $) and underscore characters

� first must not be numeric

� unique within a source program

� case-insensitive

COBOL

� 1-30 alphanumeric and hyphen (dash) characters; as of
Enterprise COBOL 4.2, the underscore is also allowed

� first and last must not be hyphen; first must not be underscore

� must contain at least one alphabetic character

� unique within a data structure

� may not be a reserved word

� case-insensitive

PL/I

� 1-31 alphanumeric, extralingual, and underscore characters;
Enterprise PL/I: allows up to 100 characters (depending on a
compiler option); extralingual characters default to $, #, @, but
you can choose your own based on a compiler option

� first must be alphabetic, extralingual, or underscore

� unique within a data structure

� case-insensitive

Copyright � 2012 by Steven H. Comstock 53 Data Elements

Rules For Names, 2

C

� unlimited alphanumeric and underscore characters, but must be
unique within the first 255 characters

� first must not be numeric

� unique within scope

� case-sensitive

Note

� If you give a subroutine a name that begins with 'IBM', 'PLI' or
'CEE', C will change the name by converting the third character
to '$'

� C wants to ensure that needed support routines can't be used for
user routine names

� Note that this is regardless of the language the subroutine is
coded in

� Just an alert

� In MVS and OS/390, external names (program names, member
names, sometimes ddnames) have historically been limited to 8
characters (7 in PL/I), which must also be only upper case

� z/OS supports external names that are up to 1024 characters
long (32767 characters in z/OS 1.3 and later), and that are case
sensitive; details later

Copyright � 2012 by Steven H. Comstock 54 Data Elements

Computer Exercise #2: Defining Elementary Data Items

In the libraries you created as part of the previous lab you will find a variety
of mainline and subroutine source modules.

It is expected that you will want to work with mainline code in only one
language (although you are welcome to work with mainlines in as many
languages as you choose). We do expect everyone to work with subroutines
in all languages for which you have a compiler.

To this end, we have provided skeleton code, comments with lots of clues,
and some lab assist programs, macros, copy books, and so on.

For this lab, you should define some data elements in the mainline program
for the language of your choice, from the list:

M52MNA1 Assembler
M52MNC1 COBOL
M52MNP1 PL/I
M52MND1 C

Define these elements (please use these names, attributes, and initial
values; use language appropriate punctuation and syntax, of course; follow
the instructions in the code for Exercise 2; in COBOL programs: replace all
underscores ('_') below with dashes ('-') in the program):

Name Attributes Initial value

char_5 5 byte standard characters string 'Taste'

char_5n 5 byte null terminated string (6 bytes total) 'Paste'x'00'

pack_52 packed decimal; 7 digits, 2 to right of decimal 35.33

bin_half binary halfword 1234

bin_full binary fullword 123456789

flt_short short floating point 8.0e1

flt_long long floating point 5.0e1

Also note for COBOL programmers: depending on which version of the
COBOL compiler you are using, you may need to change the string in the
first line that says test(nohook) to be test(sym,none) or maybe just test.

Copyright � 2012 by Steven H. Comstock 55 Data Elements

Computer Exercise #2: Defining Elementary Data Items, 2

We have provided several JCL members in your <hlq>.TR.CNTL library. For
right now, these members might be of interest:

ASMSUBC - assemble and bind an assembler program
COBSUBC - compile and bind a COBOL program
PLISUBC - compile and bind a PL/I program
CSUBC - compile and bind a C program

In each case, the xxxSUBC members have a line:

// SET O=

To use this JCL to Assemble or compile a program, fill in the program name
after the O= (with no intervening spaces), for example:

// SET O=M52MNA1

if you are Assembling and binding the Assembler program.

Each job has a jobname that is your high level qualifier with a '1' appended;
you may wish to change the last letter in each jobname.

So, in the appropriate JCL member, set the O= value to be the name of the
mainline program you modified.

Finally, to test the syntax of your code, run the appropriate job to Assemble /
compile and bind the mainline program you modified. Check your results and
fix any errors.

Exercise Stretch: Do the above for one or more addtional mainline
programs.

Copyright � 2012 by Steven H. Comstock 56 Data Elements

