
Introduction to z/OS UNIX

The following terms that may appear in these course materials are trademarks or registered
trademarks:

Trademarks of the International Business Machines Corporation:

AIX, BookManager,CICS, DB2, DRDA, DS8000, ESCON, FICON, HiperSockets, IBM, ibm.com, IMS,
Language Environment, MQSeries, MVS, NetView, OS/400, POWER7, PR/SM, Processor Resource
/ Systems Manager, OS/390, OS/400, Parallel Sysplex, QMF, RACF, Redbooks, RMF, RS/6000,
SOMobjects, S/390, System z, System z9, System z10, VisualAge, VTAM, WebSphere, z/OS, z/VM,
z/VSE, z/Architecture, zEnterprise, zSeries, z9, z10

Trademarks of Microsoft Corp.: Microsoft, Windows

Trademarks of Micro Focus Corp.: Micro Focus

Trademark of American National Standards Institute: ANSI

Trademarks of America Online, Inc.: America Online, AOL

Trademarks of Quercus Systems: Personal REXX, REXXTERM

Trademark of Chicago-Soft, Ltd: MVS/QuickRef

Trademark of Phoenix Software International: (E)JES

Trademark of Triangle Systems: IOF

Trademarl of Syncsort Corp.: SyncSort

Trademark of CA: Endevor

Trademark of Serena Software International: ChangeMan

Registered Trademarks of Institute of Electrical and Electronic Engineers: IEEE, POSIX

Registered Trademarks of Corel Corporation: Corel, CorelDRAW, Corel VENTURA

Registered Trademark of Oracle Corporation: Oracle

Registered Trademark of The Open Group: UNIX

Trademarks of Sun Microsystems, Inc.: Java, EmbeddedJava, Enterprise JavaBeans, EJB, Java
Naming and Directory Interface, JavaBeans, JavaOS, JavaScript, JavaServer, JavaServerPages,
JSP, JDBC, JDK, JVM, J2EE, Sun Microsystems, 100% Pure Java

Registered Trademark of Linus Torvalds: LINUX

Registered Trademark of Unicode, Inc.: Unicode

Trademarks held on behalf of World Wide Web Consortium: W3C, XHTML, XSL, WebFonts

Trademark of Object Management Group: CORBA

Trademarks of Apple Computer: QuickTime, Safari

Trademarks of Adobe Systems, Inc.: Macromedia, PDF, Shockwave, Flash

Trademark of The Eclipse Foundation: Eclipse

Introduction to z/OS UNIX - Course Objectives

On successful completion of this class, the student, with the aid of the
appropriate reference materials, should be able to:

1. Accomplish work to support applications that use files in the Hierarchical File
System (HFS and zFS), using TSO commands or z/OS UNIX System
Services shell commands, in particular:

a. copy / move data between z/OS files
b. copy / move data between HFS files
c. copy / move data between z/OS files and HFS files, including

converting code pages as necessary
d. create, display, rename, delete, archive, unarchive, compress, and

uncompress data in HFS files
e. edit and browse HFS data

2. Use the ISPF shell, ISHELL, to work with HFS files from a TSO/ISPF session

3. Display web pages residing in HFS files on the mainframe on his or her
local browser on your company intranet

4. Create and maintain simple HTML files to display basic text and images
and to link from one page to another

5. Run batch jobs that access files and programs (DLLs) in the HFS

6. Submit jobs to run in the batch from the z/OS UNIX shell

7. Use the ISPF UNIX Directory List utiltiy (3.17), if possible

8. Use telnet to access z/OS UNIX, if possible in his or her installation

9. Understand how UNIX System Services expands and extends the capabilities
of the mainframe.

1

U-510 / 3 Days These Materials © Copyright 2012 by Steven H. Comstock V6.1

Introduction to z/OS UNIX - Topical Outline

Day One

Introduction to z/OS UNIX
z/OS and UNIX System Services
TSO User ID, Profiles, and the UNIX User ID
z/OS UNIX - The Shell Interface under OMVS
Computer Exercise: Getting to the z/OS Shell 22

More Identities
Effective UID, Group ID
Shell Command Syntax
Shell Commands: id
OMVS - Some Options
Shell Commands: logname, cal, date, echo, man, who, whoami, fc, history,
r, alias, hash, unalias
Computer Exercise: Practice With Commands 55

Variables
Shell variables
Environment variables
Shell Commands: export, env
The Shell Environment
Shell Commands: readonly, printenv
Some Common Shell Variables
Computer Exercise: Working With Shell Variables 72

UNIX Files and the Hierarchical File System (HFS)
Hierarchical File System (HFS)
Paths
Commands for Files and Paths
Shell Commands: pwd, cd, basename, dirname
File Access Permissions

Managing and Deleting Directories and Paths
Making Directories
Default Permissions
Shell Commands: umask, mkdir, rmdir
TSO CommandL: MKDIR
Shell Command: ls
Computer Exercise: Creating and Deleting Directories 121

2

U-510 / 3 Days These Materials © Copyright 2012 by Steven H. Comstock V6.1

Introduction to z/OS UNIX - Topical Outline, p.2.

Day One, continued

Data Transfer - Part 1: TSO Commands
File Organizations Supported
Record Formats
Code Pages
Names
Copying Files
TSO Commands: OPUT, OPUTX, OGET, OGETX
Computer Exercise: Copying Files .. 143

Day Two

Displaying Data Under the Shell
Displaying data
Shell Commands: head, tail
Shell Commands: Using z/OS Data Set Names
Shell Commands: cat, pg, more, pr, nl, asa, fold, cut
Computer Exercise: Displaying Files .. 160

Managing Files and Directories
Commands for Files and Directories
UNIX Files - Review
Common directories
Shell Commands: touch, rm, chmod, chaudit, chgrp, ln, link
Some more Environment Variables
Shell Commands: du, df
Computer Exercise: Working With Files ... 200

Piping and Redirection
"Standard" files and file descriptors
Pipes vs. File redirection
Shell Commands: tee, paste
Computer Exercise: Piping and Redirection 224

OEDIT and OBROWSE TSO Commands
More Irish commands
The TSO OEDIT command
The TSO OBROWSE command
Shell Commands: oedit, obrowse
Computer Exercise: OEDIT ... 238

3

U-510 / 3 Days These Materials © Copyright 2012 by Steven H. Comstock V6.1

Introduction to z/OS UNIX - Topical Outline, p.3.

Day Two, continued

ISHELL: Doing UNIX-y Things in an ISPF-y Way
The TSO ISHELL command
Computer Exercise: Using ISHELL ... 254

Locales and Internationalization in UNIX
Code Pages, Internationalization, and Locales
Internationalized Applications
What's This Got To Do With UNIX?
Setting Locale Values
Shell Commands: mkcatdefs, gencat, runcat, dspcat, dspmsg, localedef,

locale, iconv, tr
Computer Exercise: tr command .. 282

Day Three

More OMVS Features
OMVS - The Parameters
Computer Exercise: More Work with OMVS 298

Data Transfer - Part 2: UNIX Commands
Shell Commands: cp, copytree, mv
Shell Commands: tso
Computer Exercise: Copying, Renaming, and Moving Files 315

Compressing and Uncompressing
Compressing and Uncompressing files
Shell Commands: compress
Shell Commands: uncompress
Shell Commands: zcat

Introduction to The Web
The Web - Basic Concepts
Web Servers on z/OS
Computer Exercise: Displaying a Web Page from the Mainframe . 338

Introduction to Markup Languages
Overview: Markup Languages
SGML / HTML / XML
HTML - An Introduction
Computer Exercise: Writing Basic HTML 358

4

U-510 / 3 Days These Materials © Copyright 2012 by Steven H. Comstock V6.1

Introduction to z/OS UNIX - Topical Outline, p.4.

Managing Archive Files
Archive Files
Shell Commands: pax
Shell Commands: tar
Computer Exercise: Unwinding an Archive 374

Accessing HFS Files and Programs from Batch and TSO
Applications
JCL and HFS files
ALLOCATE and HFS files
Programs and subroutines
DLLs
UNIX System Services
C Run Time Library services
Computer Exercise: Accessing HFS files through non-UNIX applications 403

Submitting jobs from the shell
Shell commands: submit
Computer Exercise: Submitting a batch job from the shell 408

Unix directory list support
HFS file attibutes
The Udlist utiltity

telnet (Optional)
telnet and rlogin
The telnet interface
Shell commands: stty, tabs, unexpand, expand
Computer Exercise: The telnet Experience 449
A Little UNIX Humor

Wrap Up: Where Do We Go From Here
Further Studies
Resources

Appendices
OCOPY
Course summary
Index

5

U-510 / 3 Days These Materials © Copyright 2012 by Steven H. Comstock V6.1

UNIX Standards

There have been a number of UNIX standards that have become popular over
the years, so many that "open source" is almost "open chaos". In an attempt to
re-establish common ground, two major organizations, The Open Group, an
organization sponsored by many of the major vendors, and the IEEE (Institute of
Electrical and Electronics Engineers) a well-respected technical, non-profit
organization, have combined to establish the Single UNIX Specification (SUS), a
document that both organizations have pledged to adhere to.

This document merges and extends standards by establishing a common
vocabulary and set of APIs (Application Programming Interface's, including
commands and utilities) that build on the IEEE's POSIX standard and The Open
Group's UNIX 95 (XPG) standard.

Some web pages that are of interest for those who want to explore more details:

http://www.unix-systems.org/ - main page to explore the SUS from;
the standard may be downloaded from
here in hypertext format or PDF

http://www.ieee.org/index.html - home page for the IEEE

http://www.opengroup.org/ - home page for The Open Group

IBM's z/OS UNIX System Services conforms to various levels of these standards
and includes extensions to the standards. Remember that while any given
extension may be nice to have / use, using such a feature may make your work
less portable to other UNIX platforms (or even not portable to such platforms).

In 2006, with the advent of z/OS 1.8, some commands had to change the
meaning of some of their options and flags in order to conform to version 3 of
SUS (SUSv3). A special environment variable was defined, _UNIX03, such that
if that variable has a value of YES, then the new behavior takes effect; if this
variable is undefined or does not have a value of YES, the prior behavior is in
effect. Places where this is a concern are documented throughout these
materials.

In 2008, SUSV4 was released. No information on how this is implemented for
z/OS as of this course publication date.

6

U-510 / 3 Days These Materials © Copyright 2012 by Steven H. Comstock V6.1

Intr oduction

Copyright � 2012 by Steven H. Comstock 7 Introduction

Section Preview

� Introduction

� z/OS and UNIX System Services

� TSO User ID

� Profiles

� UNIX User ID

� z/OS UNIX - The Shell Interface Under OMVS

� Getting to the z/OS Shell (Machine exercise)

z/OS and UNIX System Services

� The advent of UNIX System Services in z/OS (and OS/390 earlier)
introduced a bit of a cultural divide in mainframe shops

� Which is not to say that each culture doesn't have some of the
characteristics of the other, they do

� It's a matter of degree and perception

� In this class, we assume you're already familiar with the z/OS world,
so we will work on learning how to function on the UNIX side of
things

� Our goal is to get familiar with UNIX as it runs under z/OS, which
is quite a bit different than standard UNIX

� You can access z/OS files and services, for example, which
doesn't make any sense on other UNIX systems

Copyright � 2012 by Steven H. Comstock 8 Introduction

The z/OS Culture

� Control

� Discipline

� Integrity

� Serial execution

The UNIX Culture

� Ease of use

� Cleverness

� Functionality

� Parallel execution

z/OS and UNIX System Services, continued

� Note that UNIX is always properly spelled with all capital letters.

� The IBM implementation is formally called "z/OS UNIX System
Services"

� The official short version of the name is simply "z/OS UNIX"

� An un-official abbreviation, "USS", is in farily wide use, although
IBM discourages that term because it has a different meaning in
the VTAM component ("Unformatted Session Services")

� We'll start by accessing the UNIX shell using the omvs command,
from TSO READY or ISPF option 6

� Note: you will sometimes hear references to "the Irish
commands"

� This is a reference to the commands originally called Open
Edition commands, so the names are, for example OMVS,
OBROWSE, OEDIT, and so on

� Coupled with a reference to the fact that many Irish family names
begin with "O'" (O'Neil, O'Reilly, and so on, for example)

Copyright � 2012 by Steven H. Comstock 9 Introduction

z/OS and UNIX System Services, continued

� You can also access the z/OS UNIX shell through the telnet and rlogin
methods

� We discuss these briefly later on, but we need to mention them
in passing soon, so we wanted to make sure you realized these
are alternative options

� In all cases, to use z/OS UNIX, you need to have an ID - an Identity ...

Copyright � 2012 by Steven H. Comstock 10 Introduction

TSO User ID

� Every user of TSO must have a TSO logon id, referred to by any of
the terms "user id", "TSO ID", "TSO user id", and so on

� We will use the term "TSO ID" to distinguish this term from the
UNIX term "UID" (discussed shortly)

� A TSO ID is assigned by your security administrator and must follow
these rules:

� 1-7 alphanumeric characters, the first of which must be
alphabetic

� Although you may enter your TSO ID in lower case, the logon
process forces it to upper case so alpha characters in TSO IDs
are effectively upper-case

� In addition to the TSO restrictions, your installation may have
standards regarding the format of TSO IDs

� Any given TSO ID can only be logged into a particular z/OS system
only once at a time

� That is, you cannot establish two TSO sessions on a single
system using the same TSO id

Copyright � 2012 by Steven H. Comstock 11 Introduction

Profiles

� Each TSO ID will have a TSO profile associated with it

� This profile specifies session attributes, for example: if TSO
should automatically prefix unquoted data set names with your
TSO ID

� In addition, each user must have a security profile (using RACF,
ACF2, Top Secret, or other security package)

� This profile specifies security privileges and authorizations, such
as if you are allowed to create or delete certain data sets

� Security groups can be established with common sets of
privileges and authorizations, and a TSO user must belong to at
least one of these groups

� Note that a user may belong to multiple groups

Copyright � 2012 by Steven H. Comstock 12 Introduction

UNIX Userid

� In addition to [or, in some cases, instead of] a TSO ID, a user of z/OS
UNIX must have a UNIX Userid, or user name

� A Userid is a name that is known to the system for login
purposes

� UNIX standards require a Userid to be case sensitive and to
allow periods, dashes, and underscores in the name

� However, in z/OS, the z/OS UNIX Userid is generally the TSO
user id in all lowercase (so no special characters, for example)

� Users logging in through telnet or rlogin, do not need a TSO ID, but
they must have a UNIX Userid

� Any given z/OS UNIX user may be logged into z/OS UNIX multiple
times at once

� As well as possibly being logged on to the system through TSO
once

� z/OS UNIX requires a z/OS security product (one of: RACF, ACF2, Top
Secret, etc.) which is used to define both TSO users and UNIX users
to the system

Copyright � 2012 by Steven H. Comstock 13 Introduction

UNIX User ID

� A UNIX user must also have a User ID, or "UID" assigned

� UID's must follow these rules

� A UID is a 4-byte binary integer in the range 0 - 2,147,483,647

� A user (person) may have multiple Userids (user names), each
with one UID; and a given UID may be assigned to multiple
Userids (although this is not recommended)

� UID of 0 (zero) is special: a superuser

� Users with superuser status can access and change all UNIX
system resources

� A UID of 0 may be assigned to multiple users (although this is
not recommended)

� A user database is maintained that keeps track of each user, their
UID, userid and other information

Copyright � 2012 by Steven H. Comstock 14 Introduction

z/OS UNIX - The Shell Interface Under OMVS

� So, before you can use omvs, the systems staff must have defined
the appropriate IDs, profile files, and security segments

� Details on setting these up are beyond the scope of this course,
although we will explore aspects of the file system and security
later

� So let's see what happens when you enter the omvs command ...

Copyright � 2012 by Steven H. Comstock 15 Introduction

z/OS UNIX - The Shell Interface Under OMVS, p.2.

� The omvs interface is a 3270-based interface

� The first screen you see will look something like this:

IBM
Licensed Material - Property of IBM
5694-A01 (C) Copyright IBM Corp. 1993, 2006
(C) Copyright Mortice Kern Systems, Inc., 1985, 1996.
(C) Copyright Software Development Group, University of Waterloo, 1989.

All Rights Reserved.

U.S. Government users - RESTRICTED RIGHTS - Use, Duplication, or
Disclosure restricted by GSA-ADP schedule contract with IBM Corp.

IBM is a registered trademark of the IBM Corp.

- -
- User-specified message, or omitted -
- -

$
===> _

RUNNING
ESC=¢ 1=Help 2=SubCmd 3=HlpRetrn 4=Top 5=Bottom 6=TSO

7=BackScr 8=Scroll 9=NextSess 10=Refresh 11=FwdRetr 12=Retrieve

� The major areas of the screen are

� The body, everything above the command line

� This displays commands issued and any viewable output

� The command line (the line with the arrow (===>)

� Key in a command here and press <Enter>

� The status indicator (RUNNING in the example)

� The Escape character(s) indicator (¢ in the example)

� The function key display

Copyright � 2012 by Steven H. Comstock 16 Introduction

z/OS UNIX - The Shell Interface Under OMVS, p.3.

Notes

� The dollar sign ($) is the z/OS shell prompt character; its
presence indicates the shell is ready to accept input

� If a command you are entering is too long to fit on the command
line, enter a backslash (\) and press <Enter>

� The shell will accept your command as written so far and the
prompt changes to a greater than symbol (>) to indicate it
understands there is more to come for the current command

� The status indicator is one of these values:

RUNNING - either an application program is running or
the terminal is being polled

INPUT - the shell is waiting for input from the user

MORE... - the screen is full and is waiting for your
request to show the next screen of data
(do so by pressing one of these function
keys: Scroll, HalfScr, or Bottom)

HIDDEN - input characters are not being echoed
back to the terminal (e.g.: a password)

NOT ACCEPTED - indicates the application or shell
is hung and must be interrupted to move on

SUBCOMMAND - indicates you are operating in
subcommand mode

� You may also see more than one of these, separated by slashes
(e.g.: HIDDEN/MORE)

Copyright � 2012 by Steven H. Comstock 17 Introduction

z/OS UNIX - The Shell Interface Under OMVS, p.4.

Notes, continued

� The ESC area indicates what character(s) can be used to
generate an escape sequence

� To send control information (a signal) instead of data to the shell,
a command, or a program

� More on this later

� The function key area shows you what omvs subcommands are
currently assigned to function keys

� More on this later, but for now, notice the scrolling related
function keys:

� Top

� Bottom

� BackScr

� Scroll

� As you issue commands and the responses come back to you,
the lines scroll up off the top of the screen

� If you want to go back to look at earlier interactions, then Top
and BackScr are for you; to go forward, press Bottom or Scroll

Copyright � 2012 by Steven H. Comstock 18 Introduction

z/OS UNIX - The Shell Interface Under OMVS, p.5.

� We will be exploring more than 60 shell commands over the next
several days

� But for now, we just mention one command: exit

� Exit terminates the shell and you see this message:

$ exit
>>>> FSUM2331 The session has ended. Press <Enter> to end OMVS.

INPUT
ESC=¢ 1=Help 2=SubCmd 3=HlpRetrn 4=Top 5=Bottom 6=TSO

7=BackScr 8=Scroll 9=NextSess 10=Refresh 11=FwdRetr 12=Retrieve

� When you press <Enter>, you are back where you previously
started (TSO READY or TSO/ISPF option 6)

Copyright � 2012 by Steven H. Comstock 19 Introduction

z/OS UNIX - The Shell Interface Under OMVS, p.6.

� Notice that function key 1 is set to Help

� If you press this key you'll see something like this:

Shell Help Information
========================

This help information explains the display screen and keys that
you use when working in the shell or in subcommand mode. After you
invoke the shell with the OMVS command, you can switch among the
shell, a TSO/E session, and subcommand mode. You can switch to
TSO/E to perform some tasks without interrupting a process that is
running and without shutting down the shell. You can switch to
subcommand mode to end the process if your process is in a loop
and you are unable to interrupt the process or enter a command.

To exit the shell when a foreground process has completed, type
exit and press Enter, or press the <ESC>-D keys in sequence (where
<ESC> is a defined escape character displayed at the bottom of your
screen). Any processes that are spawned using the nohup command
continue to run after you exit. Any processes spawned in the
background without using the nohup command die when you exit.

------------------------------ ...MORE... ----------------------------------
===>

INPUT
ESC=¢ 1=Help 2=SubCmd 3=HlpRetrn 4=Top 5=Bottom 6=TSO

7=BackScr 8=Scroll 9=NextSess 10=Refresh 11=FwdRetr 12=Retrieve

� The ... MORE ... at the bottom of the screen indicates you can scroll
down

� At this point, function keys 4, 5, 7, and 8 become useful

� To leave Help, press function key 3

Copyright � 2012 by Steven H. Comstock 20 Introduction

The Shell at Work

� Generally, the shell works with three files...

� stdin - where commands and data are entered; normally mapped
to the keyboard (this is how the command line contents are
made accessible to commands and programs)

� stdout - where the results of commands are written; normally
mapped to the screen

� stderr - where error messages and diagnostics are written;
normally mapped to the screen also

� Each file may also be represented by a file descriptor, a number used
as a shorthand in many commands and programs; usually:

� file descriptor 0 is mapped to stdin

� file descriptor 1 is mapped to stdout

� file descriptor 2 is mapped to stderr

� Basically, the shell writes a prompt to stdout then reads from stdin,
waiting for the user to press <Enter>

� Input from the command line (stdin) is read, parsed, and
processed, results being written to stdout

� If an error is encountered, one or more error messages are
written to stderr

Copyright � 2012 by Steven H. Comstock 21 Introduction

Computer Exercise: Getting to the z/OS Shell

At this point, you should log in to TSO. Then at either the TSO READY
prompt or at ISPF option 6, issue the omvs command.

Press the F1 key (Help). Then while in Help use F4, F5, F7, and F8 to
explore help about the z/OS shell, then press F3 to exit help.

Exit omvs and return to TSO or ISPF.

Next you need to be in ISPF to do the next step: from ISPF option 6 issue
this command:

===> ex '___________.train.library(u510strt)' exec

This will invoke a small dialog to create some files we will use for later
exercises. The first thing you will see is a prompt for the high level qualifier to
use for the data set names; it is set to be your TSO id and this is probably
OK. In any case, set the value you want and press <Enter>. At this point the
files you need will be created. The file names will begin with your high level
qualifier (<hlq>) followed by TR:

<hlq>.TR.LIBRARY (PDS for data)

<hlq>.TR.CNTL (PDS for batch jobs lab)

<hlq>.TR.LOAD (PDS for executable programs)

<hlq>.TR.PDSE (PDSE for executable programs)

Although this is a simple exercise, it helps us make sure everyone can get to
the z/OS shell. If you have problems we can start getting help now since
most problems at this point are incorrect setup by systems staff, network
failures, and workstation problems.

Copyright � 2012 by Steven H. Comstock 22 Introduction

Ide ntities

Copyright � 2012 by Steven H. Comstock 23 Identities

Section Preview

� More Identities

� Effective UID

� Group ID

� More shell commands

� Shell Command Syntax

� Shell Commands: id

� OMVS - Some Options

� Shell Commands: logname, cal, date, echo, man,
who, whoami, fc, history, r, alias, hash, unalias

� Practice With Commands (Machine Exercise)

Effective UID

� In some cases, a UNIX user can change the UID they are running
under, on the fly

� In this case, they have an effective UID (the UID they are currently
using) and a real UID (the UID they logged in under)

� For this to be allowed, the user must be a superuser or have
particular permissions

� Similarly, some executable files can be marked as being a SETUID
program

� When anyone runs the program, they run under the UID of the
file's owner

� At this point, the user's real UID is their real UID, but their
effective UID is the UID of the program's owner

Copyright � 2012 by Steven H. Comstock 24 Identities

Group ID

� Every UNIX system also has a set of groups of users

� Collections of related UIDs, authorizations, and permissions

� Each group is identified by a 4-byte binary integer in the range
0 - 2,147,483,647

� This is called the Group ID (sometimes "GID")

� Every group also has a Group name (alphanumeric)

� Every user belongs to at least one group (perhaps a department or
an application group) and often many groups

� Access to files is at least partially controlled by what group(s) a
UNIX user belongs to, as we shall see later

� As with user ID's, there can be a real GID (the GID associated at
login time) and an effective GID (the GID associated with the
executable being run)

� They are usually the same, but not always, since a program can
be designated as a SETGID program

� When such a program is run, the effective GID is temporarily
changed

� As with the user id, a group database is maintained that keeps track
of group related information

Copyright � 2012 by Steven H. Comstock 25 Identities

More Shell Commands

� So far we have seen just one shell command: exit

� Not very exciting, but useful

� Incidentally, you can code an integer value, or expression that
evaluates to an integer, between 0 and 255 on an exit command,
for example: exit 12

� This value is called the exit value

� All commands produce an exit value, either 0 (for success) or a
message number (for error or unusual completion)

� For exit, if you don't specify an exit value, the exit value on the
last command run is passed back as the exit value

� There are many more shell commands, so we start to build our
repertoire a little bit more; we'll look at commands that:

� Are related to identity and ID's (id, logname, who)

� Provide information (date, cal, man)

� Assist in command execution (echo, fc, alias, unalias)

� Along the way, we'll try our hand at some of these

� But first, a word about syntax ..

Copyright � 2012 by Steven H. Comstock 26 Identities

Shell Command Syntax

Shell commands

� Typically, a command has this syntax:

command_name [option(s)] [operand(s)]

� command_name is case sensitive

� The options, or flags, usually begin with a dash(-)

� The number of operands depends on the command; multiple
operands are separated by spaces; some commands have no
operands

� In the syntax diagrams, we use brackets ([]) to indicate flags or
operands that are optional

� For example: id [user]
indicates you can supply a user name or not

� If an optional piece is omitted, there is always some default
implied

� Also, don't code the brackets in these cases

� Unfortunately, many commands can use operands that include
brackets as part of the syntax — we will be very careful to make
the distinctions clear

� Terms shown in non-italicized type are keyed as shown

� Terms that are shown in italic are to be replaced by values

� For example: id [user]
means code a value for user, don't code the word "user"

Copyright � 2012 by Steven H. Comstock 27 Shell commands

Shell Command Syntax, 2

� Sometimes there is a string of flags in the brackets; this means you
can code some or all of these options

� For example: ls [-AabCcdEFfgHiLlmnopqRrstuWx1]
which indicates you can code -A or -Aa or -Aab or ...

� If you want, you can code each option with its own dash, for
example: ls -A -m -p

� The order of options is not important, as long as they all come
before the operands of the command

� Note that we may not always include all possible flags for any
given command

� We want to focus on the essentials and important features and
ignore options that are likely not of interest or use for the
applications programmer

� However, we will tend to err on the side of completeness

� In the command write-up, the following narrative will explain any
special restrictions on various combinations

Copyright � 2012 by Steven H. Comstock 28 Shell commands

Shell Commands: id

� The id command returns the UID, user name, GID, and group name
for a UNIX user

Syntax

id [user]
or

id -G [-n] [user]
or

id -g [-nr] [user]
or

id -u [-nr] [user]

Where

� user is the name of the user you are inquiring about (if omitted,
it returns your information)

� "G" indicates return all group IDs (real and effective) while "g"
indicates only return the effective group ID

� "u" indicates only return the effective UID (default is to return
both real and effective)

� "n" indicates return the name only (not the ID)

� "r" indicates return only the real ID, not the effective

Copyright � 2012 by Steven H. Comstock 29 Shell commands

Shell Commands: id, p.2.

Notes

� So the entire list of valid commands without a user name is:

id

id -G

id -Gn

id -g

id -gnr

id -u

id -unr

Computer Experiment: Test the id command (postpone if not possible)

If you are not already in omvs, get there.

Issue the above commands.

Issue the same commands using someone else's user name.

Issue an invalid form, such as: id -Gr What happens?

Copyright � 2012 by Steven H. Comstock 30 Shell commands

Let's Do It!

OMVS - Some Options

� If you enter a command with an invalid format, UNIX comes back
and tries to give you a clue about the usage of the command,
looking something like this:

Usage: id Ÿuser"
id -G Ÿ-n" Ÿuser"
id -g Ÿ-nr" Ÿuser"
id -u Ÿ-nr" Ÿuser"

� If your screen looks like this, the problem is code page based

� A code page defines the character assigned to each code point (hex
value) that can be found in a byte

� When a byte is sent to a screen or a printer, the current code
page determines what is seen

� Even though all mainframe work is done using the EBCDIC coding
scheme, different code pages are used for different languages

� The default code page for z/OS is usually IBM-037

� But the default code page for the z/OS UNIX Shell is IBM-1047

� There are 13 characters that are variant across IBM mainframe code
pages: the hex_value-to-graphics mappings are not the same for all
code pages for these characters: { } \ [] ^ ~ ! # | $ @ ` ("accent
grave" or "backwards apostrophe" or "backquote")

Copyright � 2012 by Steven H. Comstock 31 Shell commands

OMVS - Some Options, continued

� There are several ways to fix this problem

� Try changing the code page used by your emulator (some 3270
emulator programs let you do this)

� Try remapping just specific characters that cause you problems
with your emulator

� Try changing your terminal type on the ISPF Settings panel

� Invoke omvs with the CONVERT option, specifying a code page
conversion table (in the US, usually BPXFX111)

� You do this as part of issuing the omvs command:

==> omvs convert((bpxfx111))

� Note the double set of parentheses; the outermost indicates a
parameter value is being assigned to the convert option, the
innermost indicates the name is a member in the default search
order for system libraries (the link list)

Computer Experiment: Solve code page problem

If you had a code page problem, exit out of omvs, and try the various options
described above; retry the bad id command:

id -Gr

to see if the messages are easier to read now.

Copyright � 2012 by Steven H. Comstock 32 Shell commands

Let's Do It!

OMVS - Some Options, continued

� Another strange default IBM supplies is to use the cent sign (¢) as
the default escape character - "strange" since this character is not
found on most workstation keyboards

� As with code pages, there are several alternatives here

� Remap your keyboard to be able to enter the cent sign

� Add the ESC option on the omvs command

� You may specify up to eight characters, bounded by single
quotes, no spaces; any of these characters may be used for an
escape character

� Do not choose any characters that might be part of your data or
commands, if possible

� For example:

omvs esc('^@')

� Assign a function key to the Control omvs subcommand:

omvs pf2(control)

Note that these may be combined with the convert option

Copyright � 2012 by Steven H. Comstock 33 Shell commands

OMVS - Some Options, continued

� More about escape characters

� There are two main uses for escape characters

� 1) To send control signals to the shell, a program, or a command

� Control signals might include requests to pause, resume,
cancel, raise end of data, and so on

� Discussed on the next page

� 2) To send special characters and have them interpreted as the
characters instead of their special use

� Discussed later

� For a variety of reasons we don't want to get into here, users
accessing TSO using an emulator cannot use the Esc or Ctrl keys
on their keyboards as their escape key

� You must either designate a function key to have the value of
'control' or specify a key with an assigned glyph (that is,
alphanumeric or punctuation) as your escape character

� Then use assigned "escape sequences" to send control
signals to the shell or a running program

Copyright � 2012 by Steven H. Comstock 34 Shell commands

OMVS - Some Options, continued

Escape sequences

� In the literature you will see references to <EscChar-D> or
<Ctrl-D>, for example

� If you have assigned an escape character to a keyboard
character, you enter that character followed by the character
specified in the reference

� For example, if you invoked omvs as omvs esc('^@'), then
if you enter the string: ^D on the keyboard

� When you press <Enter>, these two characters are converted
to the equivalent escape sequence

� If you have assigned the control command to a function key,
enter the character and press the function key

� For example: D <pf2>

� At that point, the equivalent escape sequence is passed to
the program

� Note that escape sequences are not case sensitive

� These escape sequences are useful at this point:

� <Ctrl-c> - cancel the current work

� <Ctrl-d> - exit the session

� <Ctrl-z> - suspend the current work; resume by entering the fg
command (details later)

Copyright � 2012 by Steven H. Comstock 35 Shell commands

Shell Commands: logname

� This command returns the user name of the person issuing the
command

Syntax

logname

� The name is returned in all upper case, regardless of how the
person logged in or how the name is defined to UNIX, TSO, or
the security package

Copyright � 2012 by Steven H. Comstock 36 Shell commands

Shell Commands: cal

� The cal command displays a calendar for a specific month

Syntax

cal [month] [year]

Where

� With no arguments, cal displays a calendar for the current month
of the current year

� If one argument is given and it is numeric, cal interprets it as a
year (for example, 2012)

� if a single argument is not numeric, cal interprets it as the name
of a month, possibly abbreviated (for example, apr)

� If two arguments are given, cal assumes that the first argument
is the month (either a number from 1 to 12 or a month name) and
the second is the year

� Year numbers less than 100 refer to the early Christian era, not the
current century

� This command uses the Gregorian calendar, handling September
1752 correctly

� Many cultures observe other calendars.

Copyright � 2012 by Steven H. Comstock 37 Shell commands

Shell Commands: date

� This command returns the current date and time as far as the
operating system knows

Syntax

date [-cu] [+format]

Where

� "c" displays the time using Greenwich Mean Time, referring to it
as "CUT" (for Coordinated Universal Time)

� "u" displays the time using Greenwich Mean Time referring to it
as "GMT"

� If neither "c" nor "u" is specified, the time zone choice is
determined by an environment variable called TZ; (more on
environment variables soon)

� format is a format string specifying how you want the date
formatted

� Details on following page

Copyright � 2012 by Steven H. Comstock 38 Shell commands

Shell Commands: date, p.2.

date format picture strings

� %A - weekday name (e.g.: Sunday)

� %a - weekday abbrev. (e.g.: Sun)

� %B - month name (e.g.: August)

� %b - month abbrev. (e.g.: Aug)

� %C - century (00-99)

� %c - local date / time format

� %D - date as mm/dd/yy

� %d - day of month (01-31)

� %e - day of month (b1-31)

� %H - hour (00-23)

� %h - same as %b

� %I - hour (01-12)

� %j - day of year (001-366)

� %M - minute (00-59)

� %m - month number (01-12)

� %n - newline character

� Note that some of these formats vary depending on current
settings (locale, environment variables, etc.)

Copyright � 2012 by Steven H. Comstock 39 Shell commands

� %p - local "am" or "pm"

� %r - time with am or pm

� %S - seconds (00-61)

� %T - time

� %t - tab character

� %U - week in year (00-53)
(start w/ Sunday)

� %W - week in year (00-53)
(start w/ Monday)

� %w - weekday number
(Sunday is 0)

� %X - time

� %x - date

� %Y - year (4 digits)

� %y - year (2 digits)

� %Z - time zone name

� %% - a "%" character

Shell Commands: date, p.3.

� If you omit a format, a default format is used

� If you specify a format, build it up with format strings:

� Start with a "+"

� Include one or more format pictures

� If you have more than one, the whole string must be bounded by
single quotes, for example

date '+%d %B'

� Anything besides a recognized format picture is displayed as is

� The date routine processes the format string from left to right
until the string is exhausted

� The "+" can go before or after the leading quote

Another example

date +'Today is %A.'

displays:

Today is Monday.

perhaps

Copyright � 2012 by Steven H. Comstock 40 Shell commands

Shell Commands: echo

� The echo command writes a string to standard out (usually the
terminal)

Syntax

echo argument

Notes

� The argument can be any string, including any of the following
C-style escape sequences

� \a sound bell, if present

� \b backspace

� \c remove any following characters

� \f form feed

� \n newline

� \r carriage return

� \t horizontal tab

� \v vertical tab

� \0nnn The byte with the numeric value specified
by the octal value

� \\ Backslash

Copyright � 2012 by Steven H. Comstock 41 Shell commands

Shell Commands: echo, p.2.

Notes, continued

� If any escape characters are contained in the argument string,
the string must be enclosed in single quotes or double quotes,
for example

echo 'test \f form feed'
or

echo "test \f form feed"
not

echo test \f form feed

� These escape sequences won't work if you established '\' as one
of your escape characters on the omvs command

� e.g.: omvs esc('\')

Computer Experiment: Test the echo command (postpone if not possible)

Under omvs, issue these commands:

echo this is a test

echo "this is a test"

echo 'test \f form feed'

echo 'test \f form feed and \v vertical tab'

Copyright � 2012 by Steven H. Comstock 42 Shell commands

Let's Do It!

Shell Commands: man

� The man command displays information from the UNIX online
manuals (hence the name)

Syntax

man [-wx] [-M path] [section] entry ...
or

man -k [-M path] keyword ...

Where

� "w" means only display the name of the file where any located
information is found

� "x" means list the files being searched for entry

� The files searched are determined by the environment variable
MANPATH as well as some filename-generating logic; files that
are found are searched for a topic containing entry

� "M" restricts the search to only manuals found in path (paths are
discussed later)

� section is a number 0-9 indicating what section of the help docs
to search; for z/OS UNIX, only one section is provided (1 -
commands)

� "k" indicates you are searching pre-generated list for keywords,
and you include those keywords as operands

� If you have multiple words, the search is for any entry containing
either of them; to find a phrase, put the phrase in quotes or
apostrophes

Copyright � 2012 by Steven H. Comstock 43 Shell commands

Shell Commands: man, p.2.

� If the output is extensive, the man command sends the output
through a pager command, which paginates the output in page sized
chunks

� See the pg command later

� To end the display of a man page, type q then press <Enter>

� If you want to see information on the TSO UNIX commands, prefix
the command name with 'tso'

� For example,

man omvs

� will not return any information, but

man tsoomvs

� will find information

� The other TSO UNIX commands are discussed later

Copyright � 2012 by Steven H. Comstock 44 Shell commands

Shell Commands: who

� This command returns information about UNIX users currently
logged in

� The information comes from a default accounting file, or one that
you specify

Syntax

who [-HmTu] [file]
or

who -q[file]
or

who am {I|i}

Where the flags control what information to display:

� "H" - include headers on the display

� "m" - display information about current terminal only

� "T" - terminal status ('+' - terminal allows write access to other
users; '-' - terminal does not do this)

� "u" - show idle time for terminal (shows '.' if terminal has been
used in the last minute), and show PID (process ID)

� "q" - quick list; just user names and count

� "who am I" or "who am i" returns just your information

� There are some other options, but they are extensions to the POSIX
standard

Copyright � 2012 by Steven H. Comstock 45 Shell commands

Shell Commands: whoami

� This command displays a user name associated with your effective
UID

� Usually this is the same as your user name

Syntax

whoami

� Remember, your effective UID could be the UID of a program's owner

� And any UID could have more than one user name associated
with it

� For example, UID 0 (superuser) almost always has several user's
assigned to it

� whoami is an extension to the UNIX standards, so it is not portable

Copyright � 2012 by Steven H. Comstock 46 Shell commands

Shell Commands: fc

� You may be set up to keep a history file of commands

� This file may be permanent or temporary

� If the file is temporary, it is created fresh each session

� If the file is permanent, the latest lines are appended each
session (there may be a maximum number of lines specified for
the file; if that size is exceeded, truncation may occur)

Copyright � 2012 by Steven H. Comstock 47 Shell commands

Shell Commands: fc, p.2.

� The fc command lets you work with the history of commands you
have entered

� "fc" stands for "fix commands", for what it's worth

Syntax

fc -l [-nr] [first [last]]
or

fc -s [old=new] spec

Where

� "l" produces a numbered list of commands from the history file,
from line number first to line number last

� If last is not specified, the value of first is used

� If first is not specified, begin with the first command in the current
session

� "n" lists the lines with no line numbers

� "r" produces the list in reverse order

Copyright � 2012 by Steven H. Comstock 48 Shell commands

Shell Commands: fc, p.3.

Where, continued

� "s" recalls the specified command, optionally changes part of it,
then executes it

� "spec" is an unsigned number (meaning the command on that
specified line), a number prefixed by a minus sign (the command
that many lines before the current line), or a string (the first
command containing that string); examples:

fc -s 293
fc -s -5
fc -s tsoomvs

� If spec is not coded, the default is the most recent command
entered

� "old=new" indicates that the first occurrence of string old in the
retrieved command is to be replaced by the string new before the
command is executed, for example:

fc -s stnt329=stnt330 -2

� Note that "fc" with no operands (or certain combinations of
operands) puts the command lines into an editor

� Since we don't discuss UNIX editors in this course, we won't
explore this further; if you find yourself at a question mark prompt
(?), enter q to quit the editor

Copyright � 2012 by Steven H. Comstock 49 Shell commands

Shell Commands: history, r

� The history and r commands are command aliases: alternate ways of
coding a complete command

� coding history is the same as coding fc -l

� You can also include the same [first [last]] operands

� This might be a more natural way to remember the command

� coding r is the same as coding fc -s

� You can also include the same [old=new] spec operands

� Which might be easy to remember ("r" for "recall last command"),
as well as saving keystrokes

Copyright � 2012 by Steven H. Comstock 50 Shell commands

Shell Commands: alias

� The alias command lets you assign one string as equivalent to
another; usually the second string is a command

� When name is entered as the first word on the command line, or
in a shell script, the equivalent string (the value) is substituted

Syntax

alias [-tx] [name ...]
alias [name[=value] ...]
alias -r

Where

� t requests the alias to be a tracked alias: the shell will keep track
of the full pathname to avoid future checking of the PATH
directories to find an alias when it is referenced later

� x marks the alias name to be exported to shells that will run
scripts (discussed later)

� r removes all tracked aliases from the list

� name is the alias you are creating; if omitted, display all current
tracked (-t) or untracked (no -t) aliases

� value is the string to equate to name; if =value is omitted, display
current value of name

� If value has special characters, bound it in single quotes or
double quotes; If the string has a backslash, precede the
backslash with another backslash; if such a string is double
quoted precede such double backslashes with another backslash
(or just use single quotes instead of double quotes)

Copyright � 2012 by Steven H. Comstock 51 Shell commands

Shell Commands: alias, p.2.

� You can use a command name for an alias name, for example

alias id="id -G"

� Now, whenever you issue the id command, you get the id -G
format automatically

� If you want to override your alias for one time, you can Escape the
alias by prefixing it with a backslash:

\id -g

Notes

� Use tracked aliases for frequently referenced alias commands

� Do not code spaces around the equals sign (=)

More examples

alias Howdy='echo Hello'

- may use single quotes or double quotes here

alias Adios="echo Don\'t go yet"

- need the backslash to escape the single quote

Copyright � 2012 by Steven H. Comstock 52 Shell commands

Shell Commands: hash

� The hash command lets you identify an alias as a tracked alias

Syntax

hash [name ...]

hash -r

Where

� Each name is an already defined alias

� If no name(s) is/are specified, you get the list of tracked aliases
currently in effect

� r says remove all tracked aliases

� hash, itself, is defined as a built-in alias:

alias hash='alias -t'

Copyright � 2012 by Steven H. Comstock 53 Shell commands

Shell Commands: unalias

� To remove an alias entirely, issue the unalias command

Syntax

unalias name

Example

unalias id

Copyright � 2012 by Steven H. Comstock 54 Shell commands

Computer Exercise: Practice With Commands

Take some time and explore the commands we've talked about. Try different
options and combinations.

For reference, in this section we discussed:

id (but we already tried all the options)

logname

cal

date

echo

hash

man

who

whoami

fc (and its aliases "history" and "r')

alias (and its alias "hash")

unalias

So now...
* display all current aliases

* set an alias of "Now" to be a date string that formats as

Today is month day_of_month, year; it is now hour : min

hint: get the date command right first; then set up the alias

hint: the date format string will require single quotes, so the
alias string will require double quotes

hint: no spaces around the '=' sign in the alias command

note: command names are case sensitive (note that it is Now)

* issue the command Now

* display all current aliases

Copyright � 2012 by Steven H. Comstock 55 Shell commands

** more **

Computer Exercise: Practice With Commands, p.2.

Issue the command

man tsoomvs

Press <Enter> to step through a couple of pages of output, then:

Interrupt the work (Ctrl-z)

issue a date command

resume the interrupted work (fg command) and observe
that you pick up where you left off

remember, to exit a 'man' display early, key: q<Enter>

Once you are out from the man command, enter the following string on the
command line:

echo "here is" ; Now ; id

press <Enter>. This is to demonstrate you can string multiple distinct
commands on the command line, separated by semi-colons. This is called a
command string. All the commands will be run in parallel (although these
commands end so fast you can't really tell the difference here between
running at once and running one after the other.)

Press key F12; this is omvs 'retrieve' subcommand; nicer than fc, right?

To exit your session this time, use the escape sequence Ctrl-d.

When you are done, take a break.

Copyright � 2012 by Steven H. Comstock 56 Shell commands

	Objectives
	Outline
	Introduction
	OMVS
	Lab 1 - Set up

	Identities
	Shell command syntax
	id shell command
	Escape characters
	logname shell command
	cal shell command
	date shell command
	echo shell command
	man shell command
	who shell command
	fc shell command
	alias shell command
	hash shell command
	unalias shell command
	Lab 2 - command practice

	Variables
	Shell variables
	Command substitution - backquotes
	Environment variables
	export shell command
	env shell command
	readonly shell command
	printenv
	login scripts
	Lab 3 - environment variables

	HFS
	File names
	Paths
	pwd shell command
	cd shell command
	basename, dirname shell commands
	File access permissions

	Managing Directories and Paths
	umask shell command
	mkdir shell command
	rmdir shell command
	MKDIR tso command
	ls shell command
	Lab 4 - Creating and deleting directories

	 Data transfer: TSO commands
	OPUT tso command
	OPUTX tso command
	OGET tso command
	OGETX tso command
	Lab 5 - Copying files

	Displaying data under the shell
	head shell command
	tail shell command
	Using z/OS Data Set Names
	cat shell command
	pg, more, pr, nl, asa shell commands
	fold shell command
	cut shell command
	Lab 6 - Displaying files

	Managing files and directories
	Link files, pipe files, and sockets
	touch shell command
	rm shell command
	chmod shell command
	chaudit shell command
	extattr shell command
	chgrp shell command
	chown shell command
	ln shell command
	unlink shell command
	du, df shell commands
	Lab 7 - Working with files

	Piping and redirection
	standard files and descriptors
	Pipes
	File redirection
	tee shell command
	paste shell command
	Command substitution - $()
	Lab 8 - Piping and redirection

	OEDIT and OBROWSE
	OEDIT tso command
	OBROWSE tso command
	oedit, obrowse shell commands
	Lab 9 - oedit; and use of dot (.)

	ISHELL
	ISHELL tso command
	Lab 10 - Using ISHELL

	Locales and internationalization
	Internationalization
	Locales
	mkcatdefs, gencat, runcat, dspcat, dspmsg, localedef shell commands
	locale shell command
	Enhanced ASCII functionality - tagged files
	iconv shell command
	tr shell command
	Lab 11 - tr command

	More OMVS
	OMVS
	OMVS parameters
	OMVS subcommands
	OMVS startup REXX script
	Lab 12 - More work with OMVS

	Data transfer: UNIX commands
	cp shell command
	mv shell command
	tso shell command
	Lab 13 - copy and move [and tso]

	Compressing and uncompressing
	compress shell command
	uncompress shell command
	zcat shell command

	Introduction to the Web
	The Web - basic concepts
	Web page - sample HTML
	URLs

	Web servers on z/OS
	Lab 14 - Display a web page from the mainframe

	Introduction to Markup Languages
	Overview of markup languages
	SGML
	HTML
	XML
	Introduction to HTML
	Lab 15 - Writing Basic HTML

	Managing Archive Files
	pax shell command
	tar shell command
	Lab 16 - Unwinding an Archive

	Accessing HFS files from batch jobs
	Submit jobs from the shell
	UDLIST
	telnet
	Wrap-up

