
Writing z/OS CGIs in COBOL

The following terms that may appear in these course materials are trademarks or registered
trademarks:

Trademarks of the International Business Machines Corporation:

AIX, AS/400, BookManager, CICS, COBOL/370, COBOL for MVS and VM, COBOL for OS/390 &
VM, DATABASE 2, DB2, DB2 Universal Database, DFSMS, DFSMSds, DFSORT, IBM, IBMLink,
IMS, Language Environment, MQSeries, MVS, MVS/ESA, MVS/XA, NetView, NetView/PC, OS/400,
PR/SM, OpenEdition MVS, OS/2, OS/390, OS/400, Parallel Sysplex, QMF, RACF, RS/6000,
SOMobjects, System/360, System/370, System/390, S/360, S/370, S/390, System Object Model,
TSO, VisualAge, VisualLift, VTAM, WebSphere, z/OS, z/VM, z/Architecture, zSeries, z9, z10

Trademarks of Microsoft Corp.: Microsoft, Windows, Windows NT, Visual Basic, Microsoft
Access, MS-DOS, Windows XP, Windows Vista

Trademarks of Micro Focus Corp.: Micro Focus

Trademark of American National Standards Institute: ANSI

Trademarks of America Online, Inc.: America Online, AOL

Trademarks of Quercus Systems: Personal REXX, REXXTERM

Trademark of Chicago-Soft, Ltd: MVS/QuickRef

Trademark of Phoenix Software International: (E)JES

Trademark of Triangle Systems: IOF

Trademarl of Syncsort Corp.: SyncSort

Trademark of CA: Endevor

Trademark of Serena Software International: ChangeMan

Registered Trademarks of Institute of Electrical and Electronic Engineers: IEEE, POSIX

Registered Trademarks of Corel Corporation: Corel, CorelDRAW, Corel VENTURA

Registered Trademark of Oracle Corporation: Oracle

Registered Trademark of The Open Group: UNIX

Trademarks of Sun Microsystems, Inc.: Java, EmbeddedJava, Enterprise JavaBeans, EJB, Java
Naming and Directory Interface, JavaBeans, JavaOS, JavaScript, JavaServer, JavaServerPages,
JSP, JDBC, JDK, JVM, J2EE, Sun Microsystems, 100% Pure Java

Registered Trademark of Linus Torvalds: LINUX

Registered Trademark of Unicode, Inc.: Unicode

Trademarks held on behalf of World Wide Web Consortium: W3C, XHTML, XSL, WebFonts

Trademark of Object Management Group: CORBA

Trademarks of Apple Computer: QuickTime, Safari

Trademarks of Adobe Systems, Inc.: Macromedia, PDF, Shockwave, Flash

Trademark of The Eclipse Foundation: Eclipse

1

UC04 / 2 Days These Materials Copyright � 2012 by Steven H. Comstock V2.1

Writing z/OS CGIs in COBOL - Course Objectives

On successful completion of this class, the student, with the aid of the
appropriate reference materials, should be able to:

1. Code, compile, bind, debug, deploy, and maintain CGIs for the z/OS
environment, written in COBOL

2. Handle GET and POST requests: analyze and take action, as appropriate
* Parse and decode a QUERY_STRING value for GET
* Gather in the stdin data for POST

- Save a file as is or translated to EBCDIC on the mainframe, for POST

3. Produce responses that are dynamically created HTML pages or
redirection to existing pages

4. Access environment variables

5. Access DB2 data (optional: depends if DB2 installed and lab set up done)

6. Access VSAM KSDS data by primary key or alternate index

7. Put out HTML encoded in UTF-16, to provide a truly international aspect to
your website

8 Submit jobs to the batch from a CGI (optional; may not be appropriate in all
environments).

Note: Generally speaking, the comments here about HTML also
apply to XHTML; but our focus is on using HTML 5

Note: This course supports the HTTP server provided free with
z/OS and the ported Apache server (see page 4).

2

UC04 / 2 Days These Materials Copyright � 2012 by Steven H. Comstock V2.1

Writing z/OS CGIs in COBOL - Topical Outline

General Program Structure and Techniques
General program structure
Redirect using Display
Redirect using printf
Redirect using bpx1wrt
Watching for errors
Deploying your CGI
Computer Exercise: Setting up for labs: .. 17

Basic Processing
Emitting Headers
Emitting HTML
Accessing environment variables
Displaying environment variables
Stylesheets and CGIs
Computer Exercise: Writing out HTML pages .. 45

Handling GET Requests
Some scenarios
Parsing QUERY_STRING content
Decoding QUERY_STRING content
Computer Exercise: Handling incoming data ... 66

The Data Connection - Part I: The Story
Working With Data on the Server

The Data Connection - Part II: Working With VSAM Data
Working with VSAM files
Computer Exercise: Working with VSAM data ... 92

The Data Connection - Part III: Working With DB2 Data
Working with DB2 data
Computer Exercise: Working wth DB2 Data (optional) 106

3

UC04 / 2 Days These Materials Copyright � 2012 by Steven H. Comstock V2.1

Writing z/OS CGIs in COBOL - Topical Outline, p.2.

Hidden Controls and cookies
Session continuity
Hidden controls
Cookies
Modifying the previous CGI [to emit data]
Designing the invoked CGI [to catch data]
Coding the invoked CGI [to catch data]
Computer Exercise: The Persistence of Memory 144

POST Requests
Finding needed storage size
Allocating storage
Reading from stdin
Breaking Apart Headers and Data
Our Sample POST CGI Logic
The TCBPSTD CGI code
Computer Exercise: Handling POST Processing 172

Handling Files Sent by POST
File Handling
Computer Exercise: Saving and Linking to Files 188

Working With Unicode Data
The Role of Unicode
CGIs and Unicode
Computer Exercise: Working With Unidcode ... 196

Submitting jobs from a CGI
Set up
Logic
Computer Exercise: Submitting a job (optional) 200

Wrap up

HTTP Servers on z/OS

� There are several HTTP servers available for z/OS, but these are the
known free choices (identified by the value found in the environment
variable SERVER_SOFTWARE):

� IBM HTTP Server/V5R3M0 - this server comes free automatically
with z/OS and is based on early standards (still works fine,
though)

� IBM Apache Server - since late 2008, IBM provides this Apache
server already ported, along with some ported tools; this is free
but must be separately ordered

� There is also WebSphere Application Server (WAS) which comes with
the same Apache server - but WAS is not free

� There is also a free Tomcat server from Dovetailed Technologies,
which is Java-centric (http://www.dovetail.com/products/tomcat.html)

� For simplicity, we assume you are using one of the free available
servers, which we shall refer to as "the HTTP server" (for the first
server in the list above) or "Apache" for the second

� Technically, of course, these are all HTTP servers, but we're
looking for a shorthand to be both concise and accurate

� Finally, since the behavior of these servers is largely the same,
you can take "the server" to be shorthand for "either the HTTP
server or the Apache server"

4

UC04 / 2 Days These Materials Copyright � 2012 by Steven H. Comstock V2.1

ProgramStructure

Copyright � 2012 by Steven H. Comstock 5 Program Structure

Section Preview

� General Program Structure and Techniques

� General Program Structure

� Redirect Using display

� Redirect Using printf

� Redirect Using bpx1wrt

� Watching for Errors

� Deploying Your CGI

� Setting Up for Labs (Machine Exercise)

General Program Structure

� The main work of a CGI is writing out HTML pages to stdout, which
are then intercepted by the HTTP server and transmitted to the
requesting client

� There are three basic choices for writing to stdout from COBOL

� Use COBOL DSPLAY statements - the most natural

� Use the callable service bpx1wrt - which uses a classic MVS,
z/OS approach in its parameters

� Call the C function printf() - a viable alternative; not as natural in
COBOL as using display, but it handles certain formating chores
more easily than display

� Especially if you have numeric data to display, or need character
string data to be constructed from strings whose length you don't
know in advance

� CGIs written in COBOL must be compiled RENT and NODYNAM
(reentrant code and static calls)

� Also, you may need to have the C compiler licensed to invoke
the C functions printf() and getenv() that are useful in our work

� Still, you can always call kernel services such as bpx1wrt

� Except there is no kernel callable service for working with
environment variables, so you must use either the C functions of
the new CEEENV LE service for that

Copyright � 2012 by Steven H. Comstock 6 Program Structure

Redirect Using Display

� For all COBOL CGIs, we use the typical COBOL program structure:

process nodynam xref(short) rent
* Copyright (C) 2009 by Steven H. Comstock
Identification division.
Program-id. TCBREDD.

*
* COBOL program designed to run as a CGI
* the program simply redirects the server
* to a different file
*

Environment division.
Data division.
Working-storage section.

01 pic x(16) value 'Ver1 of TCBREDD'.

01 loc.
02 pic x(22)

value
'Location: ../~scomsto/'.

02 pic x(20)
value 'customer.html.ascii'.

02 nl pic x(1) value x'15'.

procedure division.
display loc
goback.

Copyright � 2012 by Steven H. Comstock 7 Program Structure

Redirect Using Display, 2

Notes

� The 'process' statement ensures we compile reentrant and that
calls are static

� Using dynamic calls for CGIs requires the use of the bpx1lod
callable service or using DLL linkages

� Not discussed here, to focus on CGI content and structure

� The item labeled "loc" contains the text needed in a redirect
header

� The ../~scomsto says "back out of the current directory" (the two
dots) "then go into your user id's web pages directory" (/~
followed by your z/OS UNIX ID)

� You will need to replace this with a similar construct using
your actual ID, as described for you in the first lab writeup

� And customer.html.ascii is the name of the page to redirect to in
this directory

� Notice the full name is spread across two lines; since they
compile contiguously, the resulting string is what we need

� The x'15' at the end of loc represents an EBCDIC new line (NL)
character

� Since there's no output following, the HTTP server understands
there are only headers in this transmission

� Might be a little cleaner to send an extra blank line by adding:

display nl

Copyright � 2012 by Steven H. Comstock 8 Program Structure

Redirect Using printf

� Now, to accomplish the same task with calls to printf:

process nodynam xref(short) rent
* Copyright (C) 2009 by Steven H. Comstock Ver1
Identification division.
Program-id. TCBREDP.

*
* COBOL program designed to run as a CGI
* the program simply redirects the server
* to a different file
* using printf callable service
*

Environment division.
Data division.
Working-storage section.

01 pic x(16) value 'Ver1 of TCBREDP'.

01 loc.
02 pic x(22)

value
'Location: ../~scomsto/'.

02 pic x(20)
value 'customer.html.ascii'.

02 blank-line pic xx value x'1500'.

procedure division.

call 'printf' using loc
call 'printf' using blank-line

goback.

� Note that "blank-line" is a null-terminated string, which is what the
C printf function requires

Copyright � 2012 by Steven H. Comstock 9 Program Structure

Redirect using BPX1WRT

� Now let's look at the same function using calls to the z/OS UNIX
kernel service bpx1wrt

� If we want to use BPX1WRT, the general program structure is pretty
much the same, but we have these issues to address

� The bpx1wrt service requires seven parameters, passed in the
classic MVS, z/OS style:

� File descriptor number; use a fullword binary 1 for stdout

� Address of a pointer to the buffer containing the data to write

� Address to a pointer to a buffer ALET (Address space or data
space where buffer is); specify zeros to indicate the current
address space, which is what we want

� Bytes to write - fullword binary integer containing the length of
the data you want to put out

� Return value from function: -1 indicates write failed; otherwise the
actual number of bytes written

� Return code and reason code; each fullwords; not meaningful
unless return value is -1

� This service must not have trailing nulls in its parameters

Copyright � 2012 by Steven H. Comstock 10 Program Structure

Redirect using BPX1WRT, 2

� So we end up with this code:

*process nodynam xref(short) rent
* Copyright (C) 2009 by Steven H. Comstock Ver1
Identification division.
Program-id. TCBREDB.

*
* COBOL program designed to run as a CGI
* the program simply redirects the server
* to a different file, using bpx1wrt callable service
*

Environment division.
Data division.
Working-storage section.

01 pic x(16) value 'Ver1 of TCBREDB'.

01 loc.
02 pic x(22)

value 'Location: ../~scomsto/'.
02 pic x(20)

value 'customer.html.ascii'.
02 blank-line pic x(1) value x'15'.

01 bpx1-stuff.
02 stdout pic s9(8) binary value 1.
02 buffer-ptr pointer.
02 buffer-alet pic s9(8) binary value 0.
02 num-bytes pic s9(8) binary value 0.
02 return-co pic s9(8) binary value 0.
02 reason-co pic s9(8) binary value 0.
02 return-val pic s9(8) binary value 0.

Copyright � 2012 by Steven H. Comstock 11 Program Structure

Redirect using BPX1WRT, 3

procedure division.

set buffer-ptr to address of loc
move length of loc to num-bytes
call 'bpx1wrt' using stdout,

buffer-ptr,
buffer-alet,
num-bytes,
return-val,
return-co,
reason-co

set buffer-ptr to address of blank-line
move 1 to num-bytes
call 'bpx1wrt' using stdout,

buffer-ptr,
buffer-alet,
num-bytes,
return-val,
return-co,
reason-co

goback.

� Notice that the two calls to bpx1wrt are the same

� It might make good sense to put the call into a separate
paragraph and perform that paragraph after initializing the two
variable fields

� And we use that approach later

Copyright � 2012 by Steven H. Comstock 12 Program Structure

Redirect Notes

� For all of these redirect-ing CGIs, the redirect address can be a
fully-specified URI, for example:

01 loc.
02 pic x(40)

value
'Location: http://192.168.1.231/~scomsto/'.

02 pic x(20)
value 'customer.html.ascii'.

02 nl pic x(1) value x'15'.

� ... or ...

01 loc.
02 pic x(nn)

value
'Location: http:domain_name/~scomsto/'.

02 pic x(20)
value 'customer.html.ascii'.

02 nl pic x(1) value x'15'.

� The key here, in both cases, is to ensure the length of the first field
exactly matches the length of the string, so that the second field
value follows immediately

� Because it is so much simpler, we will use 'display' as our preferred
way to emit HMTL (with occasional use of bpx1wrt and printf)

� DISPLAY is inherent in the language, so we will only use the
alternative methods when they are needed for functionality that
DISPLAY may not have (for example, printf's ability to work with null
terminated strings easily)

Copyright � 2012 by Steven H. Comstock 13 Program Structure

Watching for Errors

� Debugging CGIs is generally quite awkward

� The environment is complex

� Often the HTTP server tries to continue on, even after a CGI has
abended

� So one step you can take in your code is to watch for errors

� For example, both printf and bpx1wrt allow you to test for success

� Add a RETURNING clause in your calls to printf - if you get any
negative number, you had a problem

� Check the return code (return-co) after a call to bpx1wrt - if it is
-1, you had a problem

� But what will you do in these cases? Well, you can try several
approaches

� Use DISPLAY to write a message

� Call the LE service CEEMOUT to write to stderr

� Call bpx1wrt but write to stderr (use a fullword 2)

� Call CEE3ABD or CEE3AB2 with helpful user return codes

� Call CEE3DMP to display data items

� If you have errors with services other than printf or bbx1wrt, at least
you can use bpx1wrt or printf to write out HTML text to the client that
gives some indication of the situation

Copyright � 2012 by Steven H. Comstock 14 Program Structure

Watching for Errors, 2

� In our code samples and labs we will not do extensive error checking,
in order to focus on functionality

� But in a number of places we will demonstrate error checking and
handling, so you can see some of the ways of dealing with errors

� When trying to debug CGIs, it is often helpful to look at the HTML the
CGI has emitted up to the point of the error

� Using your browser to look at a page put out by your CGI, right
click on a blank spot of the page

� In most browsers a pop-up menu will include an option like "View
page source"

� Selecting this will show you the HTML your CGI wrote out, perhaps
giving you some clues where things went wrong

� There is a pretty good tool for examining HTTP traffic; it's called
HTTPLook, it's shareware and you can download it from

� http://www.brothersoft.com/httplook-download-25677.html

� Caution: download then run the install program; you will see a
dialog about installing the BrotherSoft Extreme with some check
boxes; close the dialog; when it prompts you to continue or exit
setup, choose exit; wait a while and then you will see the setup
dialog for HTTPLook - now install this program

Copyright � 2012 by Steven H. Comstock 15 Program Structure

Deploying Your CGI for Testing

� Once you have your CGI coded, you need to compile and bind and
put the code in the correct place for it to be found by the HTTP
server when it is called for

� So the steps are:

� Compile and bind using JCL (we shall bind into a PDSE named
<your_id>.TR.PDSE)

� Or, if you are working under the shell, use the cob2 command to
compile and bind into your CGI directory

� If working outside of the shell, you need to copy your executable
load module into your CGI directory; use ISPF 6 like this:

===> oput tr.pdse(tcbredp) '/u/scomsto/CGI/tcbredp'

� Note that for the second operand, case is important; also you
need to specify the name of the directory set up for your CGIs
instead of the directory shown, of course

� Either way, your last step here is to ensure the CGI program has
the right permission bits; if you are not in the shell already,
issue the omvs command from ISPF 6 then issue these
commands:

cd CGI
chmod 755 tcbredp

� Note that you only have to do this the first time you put each CGI
into your directory; later, if you replace it, the permission bits are
remembered

Copyright � 2012 by Steven H. Comstock 16 Program Structure

Computer Exercise: Setting Up For Labs

This machine exercise is designed to provide setup for all the remaining
class exercises.

In order to work with CGIs, a lot of pieces have to be in place:

* You must have the IP address or system name of your host where
the CGIs will run; this can be internal (your intranet, behind your
firewall) or external (your internet presence, accessible by browsers
from outside your organization):

___________________________ (system name or IP address)

* You must have a z/OS UNIX ID, part of what's called an OMVS segment
as part of your security package; this includes a user id for logon (a
character string that is usually lower case), and a UID (an integer) to
identify you to the user database, a home directory (usually of the form

/u/user_id), and some other information: ___________ (your user id)

* You must have a TSO id also (which we assume to be your z/OS UNIX
userid in upper case); normally the password for both ids is the same.

* You must know your installation's choice for the directory where web

pages should be stored; often it is public_html under your home

directory; that is: /u/user_id/public_html, but not always:

_______________________ (web page directory)

* You need to know the name of the directory where your CGIs should

reside; it is often called cgi-bin or CGI and is under your home
directory; that is:

/u/user_id/CGI but it does not have to be so:

_______________ (CGI directory)

* Finally, you need to know the mapping id that the server will use to
direct CGI requests to your CGI directory; for example, in our shop,
our configuration file has the entry:

Exec /SCOMSTO/* /u/scomsto/CGI/*

which says requests for any file in SCOMSTO should resolve to files
in /u/scomsto/CGI, my CGI directory; SCOMSTO is my CGI mapping id.

______________ (CGI mapping id)

Copyright � 2012 by Steven H. Comstock 17 Program Structure

Computer Exercise, p.2.

For this lab, you have two parts: 1) the set up work and then 2) a small
lab that will build on the lecture and test the set up at the same time.

The set up

Run uc04strt, a supplied REXX exec that will prompt you for the high level
qualifier (HLQ) you want to use for your data set names; the exec uses a
default of your TSO id, and that is usually fine. Then the exec creates data
sets and copies members you will need. Then there is still some work to do.

From ISPF option 6, on the command line enter:

===> ex '__________.train.library(uc04strt)' exec

A panel displays for you to specify the HLQ for your data sets, with your TSO
id already filled in. Press <Enter> and you get a panel telling you setup has
been successful. Press <Enter> again and you are back to the ISPF
command panel

The allocated data sets:

<hlq>.TR.CNTL for your JCL (and it also contains some archive
files and other data as members)

<hlq>.TR.COBOL for your source code

<hlq>.TR.PDSE for program objects
or

<hlq>.TR.LOAD for load modules

Copyright � 2012 by Steven H. Comstock 18 Program Structure

Computer Exercise, p.3.

Next, get into OMVS, and cd to your html directory and issue these
commands:

umask 000
pax -r -f "//tr.cntl(uc04html)"

this unwinds the testing HTML pages and some data.

While you are in this directory, create a sub-directory we will use in a later
lab:

mkdir PDFs

Also while you are in this directory, you should oedit the file CGI_Labs.html
as follows:

* change all occurrences of SCOMSTO to the mapping id for
your CGI directory

* If you have access to a corporate logo image file, you can change the
 tag to point to that logo.

Next, change to your CGI directory, and issue this command:

pax -r -f "//tr.cntl(cgis)"

this unwinds your style sheet (discussed later).

Copyright � 2012 by Steven H. Comstock 19 Program Structure

Computer Exercise, p.4.

The lab.

Exit OMVS and get into edit of your source PDS. There are three members
there that do redirects:

TCBREDD - redirect using display
TCBREDB - redirect using bpx1wrt
TCBREDP - redirect using printf

Modify each of these so that "scomsto" is changed to your id.

Tip: watch out for the need to change the size of various
fields when you make these kinds of changes, throughout
the course.

Now compile and bind each of these. To do this, edit your TR.CNTL library,
member COBCGIA. This JCL compiles and binds programs into your
TR.PDSE library (or TR.LOAD if PDSEs are not supported). The

// SET O=

line should have the name of the member to compile and bind. So compile
and bind each of these three source programs.

Once you have clean compiles and binds, deploy the executables from your
TR.PDSE or TR.LOAD library to your CGI directory. (see page 16 for hints)

Finally, test your work by pointing your browser on your workstation to your
CGI_Labs.html page and runnng the COBOL programs listed in the first test
option.

Copyright � 2012 by Steven H. Comstock 20 Program Structure

Conventions used in this course:

192.168.1.231 - internal IP address used by course author for
development and testing; always replace
with your system name or IP address

scomsto - UNIX id used by the author; always replace
with your UNIX id

public_html - directory for user HTML pages; always replace
with your HTML directory

~scomsto - mapping id used to get to your HTML directory; replace
with your mapping id

SCOMSTO - mapping id used to get to your CGI directory

CGI - actual directory for user CGIs to run from; always replace
with your CGI directory mapping id

/s-css/* - directory for style sheets referenced by CGIs; maps to
/u/scomsto/CGI/* ; always replace with your
CGI stylesheet mapping (more later)

Copyright � 2012 by Steven H. Comstock 21 Program Structure

Conventions used in this course, 2:

CGI program names used in all our language-specific CGI courses: TCxfffs
where:

T comes from The Trainer's Friend

C indicates this is a CGI

x indicates the programming language; one of:
A - Assembler
B - COBOL
C - C
P - PL/I
X - REXX

fff mnemonic for the function, e.g.: RED for REDIRECT

s indicate method used to write to stdout; one of:
B - BPX1WRT
P - printf()
D - display (COBOL)
K - put skip (PL/I)
S - say (REXX)
E - echo (shell script)
R - print (Perl, Java, php)
X - EXECIO (REXX)

In a few cases, we may not follow this naming convention but it will usually
help you keep straight which program is which.

Copyright � 2012 by Steven H. Comstock 22 Program Structure

BasicProcessing

Copyright � 2012 by Steven H. Comstock 23 Basic Processing

Section Preview

� Basic Processing

� Emitting Headers

� Emitting HTML

� Accessing environment variables

� Displaying environment variables

� Stylesheets and CGIs

� Writing out HTML pages (Machine Exercise)

Emitting Headers

� Every CGI must emit

� One or more HTTP headers

� A blank line

� Some content

� Usually an HTML page

� Perhaps also some log or trace information or error
messages

� We saw with the redirect example a single header (Location) and a
blank line

� If no content is supplied with a redirect header, the z/OS HTTP
server supplies a little content to help the transmission protocol
be maintained

Copyright � 2012 by Steven H. Comstock 24 Basic Processing

Emitting Headers, 2

� When you are not just doing a Location header, most typically you
emit a Content-type header

� Using a content type of text/html, you can add two NL characters
to send the header line and corresponding blank line

� If you are using printf, you need a trailing null, so define:

01 content-hdr.
02 pic x(24)

value 'Content-type: text/html'.
02 pic xxx value x'151500'.

� And write to stdout with:

call 'printf' using content-hdr

� If you are using bpx1wrt, define content-hdr without the trailing
null and write out with:

set buffer-ptr to address of content-hdr
move length of content-hdr to num-bytes
call 'bpx1wrt' using stdout, buffer-ptr,

buffer-alet, num-bytes,
return-val, return-co,

reason-co

� If you are using display, just write out literals:

display 'Content-Type: text/html'
display ' '

Copyright � 2012 by Steven H. Comstock 25 Basic Processing

Emitting HTML

� Now you may have some work to do before you start writing out your
HTML, but you will, at some point, want to put out these lines:

<!DOCTYPE html>
<html>
<head>
<link rel=stylesheet href=/s-css/cgi-style1.css

type=text/css >

� Then a title element, then the end of your <head> section, then
start your <body>

� After your detail lines (body), you will want to bring closure with
</body> and </html> before ending your CGI

� Notice the link to a stylesheet

� This is optional, of course, and there are some issues regarding
style sheets, CGIs, and the HTTP server - which we address later in
this section

� But having the ability to work with a stylesheet is pretty essential
with HTML 5

Copyright � 2012 by Steven H. Comstock 26 Basic Processing

Emitting HTML, 2

� Since every HTML page starts out the same, we have provided a
subroutine, TTFPREB, you can call to generate these first four
statements for you

� It takes no parameters and you just call it, for example:

call 'ttfpreb'

� This saves the time and coding to get your basic HTML page
starting lines out of the way

� It also allows us to encapsulate the location-specific information
in the link to the stylesheet into only one place

Notes

� TTFPREB uses display to write out html

� Because mixing display and calls to printf don't seem to mix
when running under Apache, we have also provided subroutine
TTFPREC, which uses printf to write out html

� Call TTFPREC with the same syntax as for TTFPREB above

� For class labs, we only use this routine in one place, but you
may find a use for it elsewhere

Copyright � 2012 by Steven H. Comstock 27 Basic Processing

Emitting HTML, 3

� As a minimum, you will want to have some lines like these defined
(if you are using display, you could just put out literals, but there is
some sense in using data items there, too):

01 page-title pic x(47) value
'<title>Display Environment variables </title>'.

01 head-end pic x(08) value '</head>'.
01 body-start pic x(07) value '<body>'.
01 h2-tag pic x(40) value

'<h2>COBOL - Standard CGI variables</h2>'.
01 br-tag pic x(05) value '
'.
01 body-end pic x(08) value '</body>'.
01 html-end pic x(08) value '</html>'.

Notes

� If you will be using bpx1wrt for output, each item will need to be
a structure, in order to provide the new-line character, such as:

01 page-title.
02 pic x(37) value

'<title>Display Environment variables </title>'.
02 pic x value x'15'.

� And if you will be using printf for output, the x'15' should be
x'1500', in order to provide null-termination of the strings, for
example:

02 pic 02 value x'1500'.

Copyright � 2012 by Steven H. Comstock 28 Basic Processing

Emitting HTML, 4

� Putting out lines using display would look something like this

display page-title
display head-end
display body-start
display h2-tag

� Putting out the same lines using printf requires using z in front of
the value clauses, then:

call 'printf' using page-title
call 'printf' using head-end
call 'printf' using body-start
call 'printf' using h2-tag

� The same work using bbx1wrt would be:

set buffer-ptr to address of page-title
move length of page-title to num-bytes
perform bpx1wrt-write

set buffer-ptr to address of head-end
move length of head-end to num-bytes
perform bpx1wrt-write

set buffer-ptr to address of body-start
move length of body-start to num-bytes
perform bpx1wrt-write

set buffer-ptr to address of h2-tag
move length of h2-tag to num-bytes
perform bpx1wrt-write

. . .
bpx1wrt-write.

call 'bpx1wrt' using stdout,buffer-ptr,
buffer-alet,num-bytes,return-val,
return-co,reason-co.

Copyright � 2012 by Steven H. Comstock 29 Basic Processing

Accessing Environment Variables

� A simple redirect response is not very interesting: we only write out
HTTP headers, not even any HTML

� In the next section we explore more complex requests, focusing
there on GET requests

� In order to find out what request has been made, a CGI generally
needs to access various environment variables

� There are two possible techniques here:

� Use the LE callable service CEEENV - excellent, but not available
before z/OS 1.8, so can be a problem in some environments

� Call the relevant C function, getenv - a viable alternative for all
releases and compiled languages

� In this course we will demonstrate both of these approaches

Copyright � 2012 by Steven H. Comstock 30 Basic Processing

Accessing Environment Variables - CEEENV

� All LE-conforming languages may call the CEEENV service (introduced
in z/OS 1.8)

Generic syntax

CEEENV request, name_len, name, val_len, value, fc

Input request: a(fullword binary); "1" indicates "locate value"
Input name_len: a(fullword binary containing length of variable name)
Input name: a(string containing variable name) (not null-temrinated)
Output val_len: a(fullword where length of value is returned)
Output value: a(string containing the value)
Output fc: a(12 byte feedback code area)

Example

call 'ceeenv' using f1, nL, vName, vL, vValue, fc

� Check fc afterwards, to ensure the call was successful (if fc
contains low-values, all went well)

Copyright � 2012 by Steven H. Comstock 31 Basic Processing

Accessing Environment Variables - CEEENV, 2

� So, to flesh it out a little in the style we have been working with ...

� Our data areas would look something like this:

01 fc pic x(12) value low-values.
01 f1 pic s9(8) binary value 1.
01 nL pic s9(8) binary.
01 varname1 pic x(12) value 'QUERY_STRING'.
01 vName pointer.
01 vValue pointer.
01 vL pic s9(8) binary value 0.

� Then the prep and call might look like this:

set vName to address of varname1
move length of varname1 to nL
move low-values to fc
call 'ceeenv' using f1, nL, vName, vL, Value, fc
if fc = low-values

continue
else

perform no-val
goback

end-if
* if get here, vValue contains address of string
* and vL contains length of string

� The use of "vValue" was introduced because "value" is a COBOL
reserved word

� Then we used "vName" and "vL' to continue the naming pattern

Copyright � 2012 by Steven H. Comstock 32 Basic Processing

Accessing Environment Variables - getenv

� The getenv C function takes as input a null-terminated string
containing the name of the environment variable you are interested in

� And returns either the address of the null-terminated string
containing the value of the variable, or binary zeros if the variable
does not exist

� So we would set up the variable name and return field as:

01 Envar-related-variables.
02 var-name pic x(13) value z'QUERY_STRING'.
02 env-ptr pointer.
02 err-ind redefines env-ptr pic s9(8) binary.

� And call the function this way:

call 'getenv' using var-name returning env-ptr
if err-ind = 0

* if get here, issue 'variable not set' message
end-if

* if you get here, env-ptr contains the address of the
* null-terminated value of the environment variable

� Now, let's take a look at how we might display the value we've found -
or how to deal with a variable with no value (which means the variable
has not been defined)

� Our approach is to simply write out some HTML

� We will demonstrate using printf, bpx1wrt, and display

Copyright � 2012 by Steven H. Comstock 33 Basic Processing

Displaying Environment Variables

� Let's suppose for a minute that you are only interested in displaying
the value in an environment variable

� Which could be the case during development, debugging, or our
next lab(!)

� In COBOL, we can use printf, bpx1wrt, or display to emit the value of a
variable, regardless of how we got to the value

� However, we will assume from now on that you have used
getenv to access the value in an environment variable, since that
is available in older systems and ceeenv is only available in
newer systems

� Converting from ceeenv usage to getenv usage is left as an
exercise for the student

� From now on, in any case, we can assume we have env-ptr
pointing to the value of an environment variable

� And that value is a null-terminated string

Copyright � 2012 by Steven H. Comstock 34 Basic Processing

Displaying Environment Variables Using printf

� To use the printf function to display a string, you usually pass a
message string which includes a "%s" everywhere you want the
function to fill in a string value

� Followed by a pointer to a null-terminated string for each %s in
your message string (matching is done in order from left to right)

� So building on our previous work, we might have this in our
working-storage section:

01 var-name pic x(13) value z'QUERY_STRING'.
01 var-msg pic x(20) value z'%s = %s
'.
01 err-msg pic x(34)

value z'%s: ** variable not set **
'.

� That is, both the variable display message and the error
message are HTML with text followed by a break

� Since we are using getenv and printf, we need to terminate the
strings by null characters (using 'z' literals)

� Note the %s entries; now if we are successful we issue:

set address of var-value to env-ptr
call 'printf' using var_msg, var-name, var-value

� and if we are unsuccessful we could do:

call 'printf' using err-msg, varname

� Note that printf always writes to stdout

Copyright � 2012 by Steven H. Comstock 35 Basic Processing

Displaying Environment Variables Using BPX1WRT

� To use bpx1wrt for this task takes a little more work: you must write
the message out in pieces, using bpx1wrt for each piece

� For example:

01 disp-msg-1 pic x(15) value 'QUERY_STRING = '.
01 disp-msg-end.

02 pic x(04) value '
'.
02 pic x value x'15'.

01 err-msg pic x(22) value '** variable not set **'.
01 Envar-related-variables.

02 var-name pic x(13) value z'QUERY_STRING'.
02 env-ptr pointer.
02 err-ind redefines env-ptr pic s9(8) binary.
02 len pic s9(8) binary value 0.

.

.

.
linkage section.
01 var-value pic x(256).

.

.

.

� NOTE: Here we have deliberately set up for a maximum of 256
characters in a message

� The actual value could be longer than 256 bytes, but no damage
can be done here, since we are only accessing, not changing,
the value, and the value is outside our program

Copyright � 2012 by Steven H. Comstock 36 Basic Processing

Displaying Environment Variables Using BPX1WRT, 2

set buffer-ptr to address of disp-msg-1
move length of disp-msg-1 to num-bytes
perform bpx1wrt-write

call 'getenv' using var-name returning env-ptr
if err-ind = 0

perform getenv-err
else

set address of var-value to env-ptr

move 0 to len
inspect var-value tallying len for

characters before initial x'00'

set buffer-ptr to address of var-value
move len to num-bytes
perform bpx1wrt-write

end-if

set buffer-ptr to address of disp-msg-end
move length of disp-msg-end to num-bytes
perform bpx1wrt-write

� Notice we start by printing the initial part of the message, which
contains the variable name we are after

� Then we get the value ...

� If successful, we scan to get the length of the value and print the
value

� If no variable is found, we print the err-msg text

� Then, in either case, we print the message end (causing a new
line to be put out)

Copyright � 2012 by Steven H. Comstock 37 Basic Processing

Displaying Environment Variables Using BPX1WRT, 3

� If we find a variable with it's value, we could have, as before:

bpx1wrt-write.
call 'bpx1wrt' using stdout,

buffer-ptr,
buffer-alet,
num-bytes,
return-val,
return-co,
reason-co

if return-val =-1
call 'cee3abd' using return-co, clean-up.

� Notice above we have added a check that the write was
successful, and if not we abend with a user abend code equal to
the return code from bpx1wrt; "clean-up" needs to be defined in
working-storage as:

01 clean-up pic s9(9) binary value +1.

� Now, if a variable is not set when using bpx1wrt, we might have:

getenv-err.
set buffer-ptr to address of err-msg
move length of err-msg to num-bytes
perform bpx1wrt-write
.

Copyright � 2012 by Steven H. Comstock 38 Basic Processing

Displaying Environment Variables Using DISPLAY

� Here are the pieces for using DISPLAY to emit the value of an
environment variable:

01 Envar-related-variables.
02 var-name pic x(13) value z'QUERY_STRING'.
02 env-ptr pointer.
02 err-ind redefines env-ptr pic s9(8) binary.
02 len pic s9(8) binary value 0.

.

.

.
linkage section.
01 var-value pic x(256).

.

.

.
call 'getenv' using var-name returning env-ptr
if err-ind = 0

display 'QUERY_STRING = '
'** variable not set **
'

else
set address of var-value to env-ptr
move 0 to len
inspect var-value tallying len for

characters before initial x'00'
display 'QUERY_STRING = '

var-value(1:len) '
'
end-if

Copyright � 2012 by Steven H. Comstock 39 Basic Processing

Writing to stderr

� When a message really should go to stderr instead of stdout, you have
two choices, again:

� Use the LE CEEMOUT callable service

� Use bpx1wrt with a routing to stderr (fullword '2') instead of stdout
(fullword '1')

� If you will be using bpx1wrt, you can use the sprintf C function to
format a buffer in the same way that printf does its formatting; for
example:

call 'sprintf' using work-out, err-msg1, var-name
set buffer-ptr to address of work-out
move 0 to len
inspect work-out tallying len for

characters before initial x'00'

set buffer-ptr to address of work-out
move len to num-bytes
call 'bpx1wrt' using stderr,

buffer-ptr, buffer-alet,
num-bytes, return-val,
return-co, reason-co

� Using these new data item definitions:

01 work-out pic x(256) value spaces.
01 stderr pic s9(8) binary value 2.
01 err-msg1.

02 pic x(34)
value '%s: ** variable not set **'.

02 pic x value x'15'.

Copyright � 2012 by Steven H. Comstock 40 Basic Processing

Writing to stderr, 2

� Lines written to stderr, however, end up in the cgi-error log for the
HTTP server, not always easy to get to

� Note that you can mix and match the use of printf, getenv, ceeenv,
strlen, bpx1wrt, sprintf, ceemout all in the same program, as needed

� You only need to be aware of the formats of arguments

Copyright � 2012 by Steven H. Comstock 41 Basic Processing

bpx1wrt vs. printf() vs. DISPLAY

� As with most techniques in programming, these approaches for
writing to stdout each have their own pros and cons

bpx1wrt

� This is a z/OS UNIX kernel command; not dependent on
C-specific interfaces

� More arguments (so more set up)

� Strings must not be null-terminated

� May build up a line by bpx1wrt-ing each piece separately;
required if you intend to format one or more of the pieces

� May use to write to stderr also

printf()

� C-specific

� Fewer arguments

� String arguments (both in the message string and in any strings
passed to match up to %s formats) must be null-terminated

� Formating is done based on your arguments and format
indicators

� So must have all the pieces in place before calling printf()

� Always writes to stdout

display

� COBOL-specific

� Always writes to stdout

� More work to display null-terminated strings

� More work than printf to format data

Copyright � 2012 by Steven H. Comstock 42 Basic Processing

Stylesheets and CGIs

� Generally, a static HTML page is served from a particular directory,
and CGIs are run out of a different directory

� When a CGI references a stylesheet and it is a relative reference (for
example: <link ... href="cgi-style1.css" type="text/css">), the
stylesheet is presumed to be found in the CGI directory

� But because of the configuration values normally set up, files
found in the CGI directory are presumed to be executables and
the server tries to run the stylesheet instead of just pass it on to
the server

Copyright � 2012 by Steven H. Comstock 43 Basic Processing

Stylesheets and CGIs, 2

� To fix this, you need to provide a mapping in your configuration
files, and there are several ways to go, including these two:

� Create a string that maps to a common, shared directory for
styles; here's an example:

Pass /t-css/* /usr/lpp/testing/*

� Then in your CGI your link to a stylesheet might be:

<link ... href="/t-css/cgi-style1.css" ... >

� Create a string that maps to one of your directories, maybe even
your CGI directory; for example:

Pass /s-css/* /u/scomsto/CGI/*

� Then in your CGI your link to a stylesheet might be:

<link ... href="/s-css/cgi-style1.css" ... >

� Of course, this is normally done by a systems person, and not
lightly because it requires recycling the HTTP server

� So you build one mapping per person, and have each person
work in their own directory or

� You build a single, shared mapping and everyone uses a shared
directory or a combination

Copyright � 2012 by Steven H. Comstock 44 Basic Processing

Computer Exercise: Writing Out HTML Pages

In this exercise we work on displaying some environment variable values, and
laying the base for our future work. All the source code here is in your
TR.COBOL library. To compile and bind, use member COBCGIA in your
TR.CNTL library, just change the value of the SET O= line to point to the code
to work with.

The source code to work with:

TTFPREB - writes out the first HTML headers, as discussed on page 27
TTFPREC - writes out HTML headers using printf, see page 27

TCBVARP - uses printf for writing to stdout
TCBVARB - uses bpx1wrt for writing to stdout
TCBVARD - uses display for writing to stdout

The last three programs call TTFPREB (well, TCBVARP uses TTFPREC) and
output a page that displays the values of the environment variables
QUERY_STRING and SERVER_SOFTWARE.

Your tasks:

Change TTFPREB and TTFPREC, fixing up the system name and userid
then compile and bind this program.

Change TCBVARP or TCBVARB or TCBVARD (or more than one, if you
are so inclined) to add displays of the contents of REMOTE_ADDR and
REMOTE_USER. Compile and bind.

Deploy TCBVARx, as discussed earlier (see page 16).

Test your work by pointing your browser to CGI_Labs.html:

* Select option 2, which takes you to test_display_cob.html

* This page asks for a userid and password (you can use anything, as they
are not checked - yet) and for you to select the name of the CGI you
want to test; Fill these items in and select Submit; you should see
the output from your CGI. Test all the CGIs you have prepared.

Take some time and study the outputs, especially for QUERY_STRING.

Copyright � 2012 by Steven H. Comstock 45 Basic Processing

