
Writing z/OS CGIs in Assembler

Writing z/OS CGIs in Assembler - Course Objectives

On successful completion of this class, the student, with the aid of the
appropriate reference materials, should be able to:

1. Code, assemble, bind, debug, deploy, and maintain CGIs for the z/OS
environment, written in Assembler language

2. Handle GET and POST requests: analyze and take action, as appropriate
* Parse and decode a QUERY_STRING value for GET
* Gather in the stdin data for POST

- Save a file as is or translated to EBCDIC on the mainframe, for POST

3. Produce responses that are dynamically created HTML pages or
redirection to existing pages

4. Access environment variables

5. Access DB2 data (optional: depends if DB2 installed and lab set up done)

6. Access VSAM KSDS data by primary key or alternate index

7. Put out HTML encoded in UTF-16, to provide a truly international aspect to
your website

8 Submit jobs to the batch from a CGI (optional; may not be appropriate in all
environments).

Note:Generally speaking, the comments here about HTML also
apply to XHTML; but our focus is on using HTML 5

Note: This course supports the HTTP server provided free with
z/OS and the ported Apache server (see page 4).

1

UC06 / 2 Days These Materials Copyright � 2012 by Steven H. Comstock V3.1

Writing z/OS CGIs in Assembler - Topical Outline

General Program Structure and Techniques
General program structure
Redirect using printf
Redirect using bpx1wrt
Watching for errors
Deploying your CGI
Computer Exercise: Setting up for labs: .. 23

Basic Processing
Emitting Headers
Emitting HTML
Accessing environment variables
Displaying environment variables
Stylesheets and CGIs
Computer Exercise: Writing out HTML pages .. 49

Handling GET Requests
Some scenarios
Parsing QUERY_STRING content
Decoding QUERY_STRING content
Computer Exercise: Handling incoming data ... 70

The Data Connection - Part I: The Story
Working With Data on the Server

The Data Connection - Part II: Working With VSAM Data
Working with VSAM files
Computer Exercise: Working with VSAM data 106

The Data Connection - Part III: Working With DB2 Data
Working with DB2 data
Computer Exercise: Working wth DB2 Data (optional) 125

2

UC06 / 2 Days These Materials Copyright � 2012 by Steven H. Comstock V3.1

Writing z/OS CGIs in Assembler - Topical Outline, p.2.

Hidden Controls and cookies
Session continuity
Hidden controls
Cookies
Modifying the previous CGI [to emit data]
Designing the invoked CGI [to catch data]
Coding the invoked CGI [to catch data]
Computer Exercise: The Persistence of Memory 167

POST Requests
Finding needed storage size
Allocating storage
The CGIGETBF Routine
Reading from stdin
Breaking Apart Headers and Data
Our Sample POST CGI Logic
The TCAPSTB CGI code
Computer Exercise: Handling POST Processing 206

Handling Files Sent by POST
File Handling
Computer Exercise: Saving and Linking to Files 224

Working With Unicode Data
The Role of Unicode
CGIs and Unicode
Computer Exercise: Working With Unidcode ... 232

Submitting jobs from a CGI
Set up
Logic
Computer Exercise: Submitting a job (optional) 236

Wrap up

3

UC06 / 2 Days These Materials Copyright � 2012 by Steven H. Comstock V3.1

HTTP Servers on z/OS

� There are several HTTP servers available for z/OS, but these are the
known free choices (identified by the value found in the environment
variable SERVER_SOFTWARE):

� IBM HTTP Server/V5R3M0 - this server comes free automatically
with z/OS and is based on early standards (still works fine,
though)

� IBM Apache Server - since late 2008, IBM provides this Apache
server already ported, along with some ported tools; this is free
but must be separately ordered

� There is also WebSphere Application Server (WAS) which comes with
the same Apache server - but WAS is not free

� There is also a free Tomcat server from Dovetailed Technologies; it is
Java-centric (http://www.dovetail.com/products/tomcat.html)

� For simplicity, we assume you are using one of the free available
servers, which we shall refer to as "the HTTP server" (for the first
server in the list above) or "Apache" for the second

� Technically, of course, these are all HTTP servers, but we're
looking for a shorthand to be both concise and accurate

� Finally, since the behavior of these servers is largely the same,
you can take "the server" to be shorthand for "either the HTTP
server or the Apache server".

4

UC06 / 2 Days These Materials Copyright � 2012 by Steven H. Comstock V3.1

ProgramStructure

Copyright � 2012 by Steven H. Comstock 5 Program Structure

Section Preview

� General Program Structure and Techniques

� General Program Structure

� Redirect Using printf

� Redirect Using bpx1wrt

� Watching for Errors

� Deploying Your CGI

� Setting Up for Labs (Machine Exercise)

General Program Structure

� The main work of a CGI is writing out HTML pages to stdout, which
are then intercepted by the HTTP server and transmitted to the
requesting client

� There are two basic choices for writing to stdout from Assembler
language

� Use the callable service bpx1wrt - which uses a classic MVS,
z/OS approach in its parameters

� Call the C function printf() - a viable alternative; not as natural in
Assembler language as using bpx1wrt, but it handles certain
formating chores more easily than using bpx1wrt

� Especially if you have numeric data to display, or need character
string data to be constructed from strings whose length you don't
know in advance

� Under the HTTP server, your CGIs can mix these two
approaches, but you cannot do so, apparently, under the Apache
server

� CGIs written in Assembler language must be reentrant, and probably
should be LE-conforming

� If a program is not LE-conforming, it cannot invoke the C
functions printf() and getenv(), nor the LE functions such as
CEEGTSTG and CEEENV that are useful in this work

� Still, you can call kernel services such as bpx1wrt even if your
program is not LE-conforming

� Except there is no kernel callable service for working with
environment variables

Copyright � 2012 by Steven H. Comstock 6 Program Structure

General Program Structure, 2

� Reentrant LE-conforming programs typically start like this:

*PROCESS COMPAT(NOCASE,MACROCASE)
TCAREDP CEEENTRY PPA=MESSPPA,AUTO=WORKSIZE

� The PROCESS statement allows the Assembler to process code
and macros coded in mixed case

� The CEEENTRY macro names the program, identifies the PPA
location, and specifies how large a DSA (Dynamic Save Area)
should be allocated

� This generates CSECT, AMODE, and RMODE statements as
well as basic save area linkages

� We use the DSA to hold variable work areas - requesting storage
here eliminates using GETMAIN, STORAGE, CPOOL, or
CEEGTSTG to get storage for your modifyable data areas

� This storage is obtained in the program's stack storage, so it
is automatically freed when you leave the program

Copyright � 2012 by Steven H. Comstock 7 Program Structure

General Program Structure, 3

� Next, you might have these statements

using wareas,13
bru the_code branch around data areas

*
* CONSTANTS, WORK AREAS, ETC.

DC C'Ver3 of TCAREDP'
. . .

� The using provides addressability to a DSECT that describes any
modifyable data areas

� bru is one of the conditional relative branch instructions: branch
relative unconditional

� Since bru uses short relative addressing, "the_code" can be up
to 64K bytes away from the bru instruction itself

� Next, define all your non-modifyable data areas as well as the
source for initializing your modifyable data areas

� The example just shows an eyecatcher, useful in some dump
reading situations

� Also useful for ensuring you are working with the correct
version of a program, if you are rigorous about keeing the
version number updated

� It took the course author three tries to get it right

Copyright � 2012 by Steven H. Comstock 8 Program Structure

Redirect Using printf

� Now, for a redirecting CGI, you might have these data items:

loc dc C'Location: ../~scomsto'
dc c'/customer.html.ascii'
dc x'1500'

blank dc x'1500'

the_code ds 0h

Notes

� The line labeled "loc" contains the text needed in a redirect header

� The ../~scomsto says "back out of the current directory" (the two
dots) "then go into your user id's web pages directory" (/~ followed
by your z/OS UNIX ID)

� You will need to replace this with a siimlar construct using your
actual ID, as described for you in the first lab writeup

� And /customer.html.ascii is the name of the page to redirect to in
this directory

� Notice the full name is spread across two lines; since they
assemble consecutively, the resulting string is what we need

� The x'1500' following represents an EBCDIC new line (NL)
character followed by a null (the NL is used by the server to
indicate end of the current line; the null is needed by C type
functions that work with strings)

� The line called "blank" is used to delimit the header set; this is
required by the server

� After "the_code" is where to code the actual logic ...

Copyright � 2012 by Steven H. Comstock 9 Program Structure

Redirect Using printf, 2

� Now, a simple redirecting CGI only requres a Location header and a
blank line, so code:

call printf,(loc),vl,mf=(e,plist) point to file
call printf,(blank),vl,mf=(e,plist) blank line

� These two lines write to stdout using the C printf function

� In each case, passing a single parameter: the address of a
null-terminated string

� Which happens to end in an NL character before the null

� The null delimits what printf should write (everything up to the
null), and the server will see the two lines (Location header and
blank line)

� The "vl" indicates there is a variable number of parameters being
passed, and the Assembler will turn on the end-of-list bit in the
last entry

� Finally, the mf=(e,plist) parameter says this is the execute form
of a macro, where the the list form is at the location called
"plist"

� This approach is used for generating reentrant code: the list form
of the macro is in the modifyable data areas DSECT, while the
execute form will take input values and put them into the list
form, then call the service, passing the address of the arguments
in the list form

Copyright � 2012 by Steven H. Comstock 10 Program Structure

Redirect Using printf, 3

� Next, to return to z/OS, use the CEETERM macro, first placing a
return code value into R15:

la 15,0
CEETERM RC=(15),MODIFIER=0,mf=(e,realterm)

� Again use the execute form of a macro and point to the list form

� Next code a Program Prologue Area, which contains some LE
program management control fields - note that the name is the name
coded on the CEEENTRY macro at the start of the program:

MESSPPA CEEPPA
LTORG

� The LTORG is an Assembler instruction telling the Assembler to
gather any literal pool data areas at this point

� It is there so that no literals get swallowed into the addressability
of the following DSECT lines (next page)

Copyright � 2012 by Steven H. Comstock 11 Program Structure

Redirect Using printf, 4

� The final lines of code ...

wareas dsect
org *+CEEDSASZ

plist call ,(0,0,0,0,0,0,0,0),mf=l
realterm ceeterm rc=(15),modifier=0,mf=l
worksize equ *-wareas

CEEDSA
CEECAA
END TCAREDP

� Beginning at "wareas" is your modifyable storage area

� CEEDSASZ is a label generated by the CEEDSA macro,
indicating how much storage to reserve for the LE DSA

� So the "org" places your modifyable storage after the DSA that
LE needs

� In this case, there are just have two items: the list form of a call
and a CEETERM macro

� The CEEDSA and CEECAA generate LE-required control areas
and symbols in DSECTs

� And, of course, the END statement is the traditional Assembler
END statement

Copyright � 2012 by Steven H. Comstock 12 Program Structure

Redirect Using printf, 5

� Finally, to put it all into one place:

*PROCESS COMPAT(NOCASE,MACROCASE)
TCAREDP CEEENTRY PPA=MESSPPA,AUTO=WORKSIZE

using wareas,13
bru the_code branch around data areas

*
* CONSTANTS, WORK AREAS, ETC.

DC C'Ver3 of TCAREDP'
loc dc C'Location: ../~scomsto'

dc c'/customer.html.ascii'
dc x'1500'

blank dc x'1500'

the_code ds 0h
call printf,(loc),vl,mf=(e,plist) point to file
call printf,(blank),vl,mf=(e,plist) blank line
la 15,0
CEETERM RC=(15),MODIFIER=0,mf=(e,realterm)

MESSPPA CEEPPA
LTORG

wareas dsect
org *+CEEDSASZ

plist call ,(0,0,0,0,0,0,0,0),mf=l
realterm ceeterm rc=(15),modifier=0,mf=l
worksize equ *-wareas

CEEDSA
CEECAA
END TCAREDP

� Pretty straightforward, and easy to build on

� Now let's look at the same function using calls to the z/OS UNIX
kernel service bpx1wrt

Copyright � 2012 by Steven H. Comstock 13 Program Structure

Redirect using BPX1WRT

� To use BPX1WRT, the general structure is pretty much the same, but
with these issues to address

� The bpx1wrt service requires seven parameters, passed in the
classic MVS, z/OS style:

� File descriptor number; use a fullword binary 1 for stdout

� Address of a pointer to the buffer containing the data to write

� Address to a pointer to a buffer ALET (Address space or data
space where buffer is); specify zeros to indicate the current
address space, which is what we want

� Bytes to write - fullword binary integer containing the length of the
data you want to put out

� Return value from function: -1 indicates write failed; otherwise
returns the actual number of bytes written

� Return code and reason code; each fullwords; not meaningful
unless return value is -1

� Because bpx1wrt has so many arguments, the macro generates a
lot of instructions to set up addresses before actually calling

� You can put a single execute form call in a generalized routine
and do a BRAS to that routine for every write you need to have

� This service must not have trailing nulls in its parameters

Copyright � 2012 by Steven H. Comstock 14 Program Structure

Redirect using BPX1WRT, 2

� So the pieces you end up with that are different from using printf:

� Defining constants; here we have:

loc dc C'Location: ../~scomsto/'
dc C'customer.html.ascii'

blank dc x'15'
len_loc equ *-loc
stdout dc f'1'

� Note: no trailing nulls are needed for this service's parameters

� Also, you will need the length of the string being sent; we get this

with the equ for len_loc

� And, finally, a constant that we will reference in the call to bpx1wrt

to direct the lines to stdout

Copyright � 2012 by Steven H. Comstock 15 Program Structure

Redirect using BPX1WRT, 3

� Defining our DSECT area; at the end of our code, after our
LTORG and before our CEEDSA, we have:

wareas dsect
org *+CEEDSASZ

plist call ,(0,0,0,0,0,0,0,0),mf=l
realterm ceeterm rc=(15),modifier=0,mf=l
* bpx1wrt data items

ds 0f
bpx1_stuff ds 0cl24
buffer_ptr ds f
buffer_alet ds f
num_bytes ds f
return_co ds f
reason_co ds f
return_val ds f
worksize equ *-wareas

� Much of this is familiar; the differences:

� The list form of the call ("plist"); note you can use this list form
for any call that has seven or fewer parameters to pass; you can
add additional parameters in plist if you need to

� The "bpx1_stuff" items; this list contains a field for every
argument in the bpx1wrt call, except for the first argument (which
uses the "stdout" item defined in the non-modifyable area)

Copyright � 2012 by Steven H. Comstock 16 Program Structure

Redirect using BPX1WRT, 4

� The executable code looks like this:

the_code ds 0h
xc bpx1_stuff,bpx1_stuff

la 2,loc
st 2,buffer_ptr
la 2,len_loc
st 2,num_bytes
bras 2,common_write

la 2,blank
st 2,buffer_ptr
la 2,l'blank
st 2,num_bytes
bras 2,common_write

la 15,0

CEETERM RC=(15),MODIFIER=0,mf=(e,realterm)

common_write ds 0h
call bpx1wrt,(stdout,buffer_ptr, x

buffer_alet,num_bytes, x
return_val,return_co, x
reason_co),vl,mf=(e,plist)

br 2

Notes

� Notice the first line of the code where the call parameters are
intialized to zeros

� You can see the pattern clearly about how to invoke the common
routine to write to stdout ("common_write")

� The 'x's at the right have to be in column 72 of our code

Copyright � 2012 by Steven H. Comstock 17 Program Structure

Redirect using BPX1WRT, 5

� Again, putting it all together:

*PROCESS COMPAT(NOCASE,MACROCASE)
TCAREDB CEEENTRY PPA=MESSPPA,AUTO=WORKSIZE

using wareas,13
bru the_code branch around data areas

DC C'Ver3 of TCAREDB'
loc dc C'Location: ../~scomsto/'

dc c'/customer.html.ascii'
blank dc x'15'
len_loc equ *-loc
stdout dc f'1'

the_code ds 0h
xc bpx1_stuff,bpx1_stuff

la 2,loc
st 2,buffer_ptr
la 2,len_loc
st 2,num_bytes
bras 2,common_write

la 2,blank
st 2,buffer_ptr
la 2,l'blank
st 2,num_bytes
bras 2,common_write

la 15,0
CEETERM RC=(15),MODIFIER=0,mf=(e,realterm)

common_write ds 0h
call bpx1wrt,(stdout,buffer_ptr, x

buffer_alet,num_bytes, x
return_val,return_co, x
reason_co),vl,mf=(e,plist)

br 2

Copyright � 2012 by Steven H. Comstock 18 Program Structure

Redirect using BPX1WRT, 6

� Again, putting it all together: (page 2)

MESSPPA CEEPPA
LTORG

wareas dsect
org *+CEEDSASZ

plist call ,(0,0,0,0,0,0,0,0),mf=l
realterm ceeterm rc=(15),modifier=0,mf=l
* bpx1wrt data items

ds 0f
bpx1_stuff ds 0cl24
buffer_ptr ds f
buffer_alet ds f
num_bytes ds f
return_co ds f
reason_co ds f
return_val ds f
worksize equ *-wareas

CEEDSA
CEECAA
END TCAREDB

� For both of these CGIs, the redirect address can be a fully specified
URI, for example:

C'Location: http://192.168.1.231/~scomsto'

� For the first sample program (TCAREDP)

C'Location: http://192.168.1.231/~scomsto/'

� For the second sample program (TCAREDB)

Copyright � 2012 by Steven H. Comstock 19 Program Structure

Watching for Errors

� Debugging CGIs is generally quite awkward

� The environment is complex

� Often the HTTP server tries to continue on, even after a CGI has
abended

� So one step you can take in your code is to watch for errors

� For example, both printf and bpx1wrt might not be successful

� Check R15 after a call to printf - if it is any negative number,
there was a problem

� Check the return code after a call to bpx1wrt - if it is -1, there
was a problem

� But what to do in these cases? You can't write a message, since
these are the routines used to write messages! Well, you can try
several approaches

� Call the LE service CEEMOUT to write to stderr

� Call bpx1wrt but write to stderr (use a fullword 2)

� Put a non-zero value in the program return value

� Call CEE3ABD or CEE3AB2 if you are LE-conforming, or ABEND
if you are not

� Insert an instruction (e.g.: DC H'0") in the flow where it will
abend in the middle of code you suspect, to force an Abend

� If you have errors in other routines, at least you can use bpx1wrt or
printf to write out HTML text to the client that gives some indication
of the situation

Copyright � 2012 by Steven H. Comstock 20 Program Structure

Watching for Errors, 2

� In our code samples and labs we will not do extensive error
checking, in order to focus on functionality

� But in a number of places we will demonstrate error checking
and handling, so you can see some of the ways of dealing with
errors

� When trying to debug CGIs, it is often helpful to look at the HTML
source the CGI has emitted up to the point of the error

� Using your browser to look at a page put out by your CGI, right
click on a blank spot of the page

� In most browsers a pop-up menu will include an option like
"View page source"

� Selecting this will show you the HTML your CGI wrote out,
perhaps giving you some clues where things went wrong

� There is a pretty good tool for examining HTTP traffic; it's called
HTTPLook, it's shareware and you can download it from

� http://www.brothersoft.com/httplook-download-25677.html

� Caution: download then run the install program; you will see a
dialog about installing the BrotherSoft Extreme with some check
boxes; close the dialog; when it prompts you to continue or exit
setup, choose exit; wait a while and then you will see the setup
dialog for HTTPLook - now install this program

Copyright � 2012 by Steven H. Comstock 21 Program Structure

Deploying Your CGI for Testing

� Once you have your CGI coded, you need to Assemble and bind and
put the code in the correct place for it to be found by the HTTP
server when it is called for

� So the steps are:

� Assemble and bind using JCL (we shall bind into a PDSE named
<your_id>.TR.PDSE)

� Or, if you are working under the shell, use the c89 or as
commands to Assemble and bind into your CGI directory

� If working outside of the shell, you need to copy your executable
load module into your CGI directory; use ISPF 6 like this:

===> oput tr.pdse(tcaredp) '/u/scomsto/CGI/tcaredp'

� Note that for the second operand, case is important; also you
need to specify the name of the directory set up for your CGIs
instead of the directory shown, of course

� Either way, your last step here is to ensure the CGI program has
the right permission bits; if you are not in the shell already,
issue the omvs command from ISPF 6 then issue these
commands:

cd CGI
chmod 755 tcaredp

� Note that you only have to do this the first time you put each CGI
into your directory; later, if you replace it, the permission bits are
remembered

Copyright � 2012 by Steven H. Comstock 22 Program Structure

Computer Exercise: Setting Up For Labs

This machine exercise is designed to provide setup for all the remaining
class exercises.

In order to work with CGIs, a lot of pieces have to be in place:

* You must have the IP address or system name of your host where
the CGIs will run; this can be internal (your intranet, behind your
firewall) or external (your internet presence, accessible by browsers
from outside your organization):

___________________________ (system name or IP address)

* You must have a z/OS UNIX ID, part of what's called an OMVS segment
as part of your security package; this includes a user id for logon (a
character string that is usually lower case), and a UID (an integer) to
identify you to the user database, a home directory (usually of the form

/u/user_id), and some other information: ___________ (your user id)

* You must have a TSO id also (which we assume to be your z/OS UNIX
userid in upper case); normally the password for both ids is the same.

* You must know your installation's choice for the directory where web

pages should be stored; often it is public_html under your home

directory; that is: /u/user_id/public_html, but not always:

_______________________ (web page directory)

* You need to know the name of the directory where your CGIs should

reside; it is often called CGI and is under your home directory; that is:

/u/user_id/CGI but it does not have to be so:

_______________ (CGI directory)

* Finally, you need to know the mapping id that the server will use to
direct CGI requests to your CGI directory; for example, in our shop,
our configuration file has the entry:

Exec /SCOMSTO/* /u/scomsto/CGI/*

which says requests for any file in SCOMSTO should resolve to files
in /u/scomsto/CGI, my CGI directory; SCOMSTO is my CGI mapping id.

______________ (CGI mapping id)

Copyright � 2012 by Steven H. Comstock 23 Program Structure

Computer Exercise, p.2.

For this lab, you have two parts: 1) the set up work and then 2) a small
lab that will build on the lecture and test the set up at the same time.

The set up

Run uc06strt, a supplied REXX exec that will prompt you for the high level
qualifier (HLQ) you want to use for your data set names; the exec uses a
default of your TSO id, and that is usually fine. Then the exec creates data
sets and copies members you will need. Then there is still some work to do.

From ISPF option 6, on the command line enter:

===> ex '__________.train.library(uc06strt)' exec

A panel displays for you to specify the HLQ for your data sets, with your TSO
id already filled in. Press <Enter> and you get a panel telling you setup has
been successful. Press <Enter> again and you are back to the ISPF
command panel

The allocated data sets:

<hlq>.TR.CNTL for your JCL (and it also contains some archive
files and other data as members)

<hlq>.TR.SOURCE for your source code

<hlq>.TR.PDSE for program objects
or

<hlq>.TR.LOAD for load modules

Copyright � 2012 by Steven H. Comstock 24 Program Structure

Computer Exercise, p.3.

Next, get into OMVS, and cd to your html directory and issue these
commands:

umask 000
pax -r -f "//tr.cntl(uc06html)"

this unwinds the testing HTML pages and some data.

While you are in this directory, create a sub-directory we will use in a later
lab:

mkdir PDFs

Also while you are in this directory, you should oedit the file

AsmCGI_Labs.html as follows:

* change all occurrences of SCOMSTO to the mapping id for
your CGI directory

* If you have access to a corporate logo image file, you can change the
 tag to point to that logo.

Next, change to your CGI directory, and issue this command:

pax -r -f "//tr.cntl(cgis)"

this unwinds your style sheet (discussed later).

Copyright � 2012 by Steven H. Comstock 25 Program Structure

Computer Exercise, p.4.

The lab.

Exit OMVS and get into edit of your source PDS. There are two members
there that do redirects:

TCAREDB - redirect using bpx1wrt
TCAREDP - redirect using printf

Modify each of these so that "scomsto" is changed to your id

Now Assemble and bind each of these. To do this, edit your TR.CNTL
library, member ASMCGIA. This JCL Assembles and binds programs into
your TR.PDSE library. The

// SET O=

line should have the name of the member to Assemble and bind. So
Assemble and bind each of these two programs.

Once you have clean Assemblies and binds, deploy the executables from
your TR.PDSE or TR.LOAD library to your CGI directory. (see page 22 for
hints)

Finally, test your work by pointing your browser on your workstation to your
AsmCGI_Labs.html page and runnng the Assembler language programs
listed in the first test option.

Copyright � 2012 by Steven H. Comstock 26 Program Structure

Conventions used in this course:

192.168.1.231 - internal IP address used by course author for
development and testing; always replace
with your system name or IP address

scomsto - UNIX id used by the author; always replace
with your UNIX id

public_html - directory for user HTML pages; always replace
with your HTML directory

~scomsto - mapping id used to get to your HTML directory; replace
with your mapping id

SCOMSTO - mapping id used to get to your CGI directory

CGI - actual directory for user CGIs to run from; always replace
with your CGI directory mapping id

/s-css/* - directory for style sheets referenced by CGIs; maps to
/u/scomsto/CGI/* ; always replace with your
CGI stylesheet mapping (more later)

Copyright � 2012 by Steven H. Comstock 27 Program Structure

Conventions used in this course, 2:

CGI program names used in all our language-specific CGI courses: TCxfffs
where:

T comes from The Trainer's Friend

C indicates this is a CGI

x indicates the programming language; one of:
A - Assembler
B - COBOL
C - C
P - PL/I
X - REXX

fff mnemonic for the function, e.g.: RED for REDIRECT

s indicate method used to write to stdout; one of:
B - BPX1WRT
P - printf()
D - display (COBOL)
K - put skip (PL/I)
S - say (REXX)
E - echo (shell script)
R - print (Perl, Java, php)
X - EXECIO (REXX)

In a few cases, we may not follow this naming convention but it will usually
help you keep straight which program is which.

Copyright � 2012 by Steven H. Comstock 28 Program Structure

BasicProcessing

Copyright � 2012 by Steven H. Comstock 29 Basic Processing

Section Preview

� Basic Processing

� Emitting Headers

� Emitting HTML

� Accessing environment variables

� Displaying environment variables

� Stylesheets and CGIs

� Writing out HTML pages (Machine Exercise)

Emitting Headers

� Every CGI must emit

� One or more HTTP headers

� A blank line

� Some content

� Usually an HTML page

� Perhaps also some log or trace information or error
messages

� We saw with the redirect example a single header (Location) and a
blank line

� If no content is supplied with a redirect header, the z/OS HTTP
server supplies a little content to help the transmission protocol
be maintained

Copyright � 2012 by Steven H. Comstock 30 Basic Processing

Emitting Headers, 2

� When there is more to emit than a Location header, most typically
emitting a Content-type header is required

� Using a content type of text/html, add two NL characters to send
the header line and corresponding blank line

� Using printf, add a trailing null, so define:

charset1 dc C'Content-type: text/html ',x'15'
blank dc x'1500'

� And write to stdout with:

call printf,(charset1),vl,mf=(e,plist)

� Using bpx1wrt, define:

charset1 dc C'Content-type: text/html ',x
blank dc x'1515'

� And write out with:

la 2,charset1
st 2,buffer_ptr
la 2,l'charset1+2
st 2,num_bytes
bras 2,common_write

Copyright � 2012 by Steven H. Comstock 31 Basic Processing

Emitting HTML

� There may be some work to do before writing out the main HTML, but
at some point, put out these lines:

<!DOCTYPE html>
<htm>
<head>
<link rel=stylesheet href=/s-css/cgi-style1.css

type=text/css >

� Then a title element, then the end of the <head> section, then start
your <body>

� After the detail lines (body), bring closure with </body> and </html>
before ending your CGI

� Notice the link to a stylesheet

� This is optional, of course, and there are some issues regarding
style sheets, CGIs, and the HTTP server - which we address later in
this section

� But having the ability to work with a stylesheet is pretty essential
with HTML 5

Copyright � 2012 by Steven H. Comstock 32 Basic Processing

Emitting HTML, 2

� Since every HTML page starts out the same, we have provided a
subroutine, TTFPREA, you can call to generate these first lines for
you

� It takes no parameters, just call it, using:

call ttfprea,,vl,mf=(e,plist)

� This saves the time and coding to get your basic HTML page
starting lines out of the way

� It also allows us to encapsulate the location-specific information
in the link to the stylesheet into only one place

Notes

� TTFPREA uses bpx1wrt to write out html

� Because calling bpx1wrt and printf don't seem to mix when
running under Apache, we have also provided subroutine
TTFPREP, which uses printf to write out html

� Call TTFPREP with the same syntax as for TTFPREA above

� For class labs, we only use this routine in one place, but you
may find a use for it elsewhere

Copyright � 2012 by Steven H. Comstock 33 Basic Processing

Emitting HTML, 3

� After the headers ttfprea emits, for your next lines, you will want to
have something like this defined:

title dc c'<title>Display Environment variables </x
title>',x'15'

head_end dc c'</head>',x'15'
body_beg dc c'<body>',x'15'
h2_tag dc c'<h2>Assembler - Standard CGI variables x

</h2>',x'15'
br_tag dc c'
',x'15'
body_end dc c'</body>',x'15'
html_end dc c'</html>',x'15'

Notes

� The items labeled "title" and "h2_tag" demonstrate continuing a
literal item: code up through 71, put a non-blank character in 72,
and begin the continuation exactly in column 16

� We do this instead of simply having two consecutive DC
statements because we will want to use the length attribute, for

example: LA 2,L'TITLE
and with two separate statements, only the length of the first
statement would be picked up

� Actually, in this example we didn't have to continue, except for
typographical limitations: both sets actually fit on one line each

� If you will be using printf for output, each x'15' should be x'1500'

Copyright � 2012 by Steven H. Comstock 34 Basic Processing

Emitting HTML, 4

� Putting out lines using printf would be something like:

call printf,(title),vl,mf=(e,plist)
call printf,(head_end),vl,mf=(e,plist)
call printf,(body_bet),vl,mf=(e,plist)
call printf,(h2_tag),vl,mf=(e,plist)

� And so on; the same work using bbx1wrt would be:

la 2,title
st 2,buffer_ptr
la 2,l'title+1
st 2,num_bytes
bras 2,common_write

la 2,head_end
st 2,buffer_ptr
la 2,l'head_end+1
st 2,num_bytes
bras 2,common_write

la 2,body_beg
st 2,buffer_ptr
la 2,l'body_beg+1
st 2,num_bytes
bras 2,common_write

la 2,h2_tag
st 2,buffer_ptr
la 2,l'h2_tag+1
st 2,num_bytes
bras 2,common_write

Copyright � 2012 by Steven H. Comstock 35 Basic Processing

Accessing Environment Variables

� A simple redirect response is not very interesting: we only write out
HTTP headers, not even any HTML

� In the next section we explore more complex requests, focusing
there on GET requests

� In order to find out what request has been made, a CGI generally
needs to access various environment variables

� There are three possible techniques here:

� Follow memory control block chains - complex and error prone

� Use the LE callable service CEEENV - excellent, but not available
before z/OS 1.8, so can be a problem in some environments

� Call the relevant C function, getenv - a viable alternative for all
releases and compiled languages

� In this course we will demonstrate both of the last two approaches

Copyright � 2012 by Steven H. Comstock 36 Basic Processing

Accessing Environment Variables - CEEENV

� All LE-conforming languages may call the CEEENV service (introduced
in z/OS 1.8)

Syntax

CEEENV request, name_len, name, val_len, value, fc

Input request: a(fullword binary); "1" indicates "locate value"
Input name_len: a(fullword binary containing length of variable name)
Input name: a(string containing variable name) (not null-temrinated)
Output val_len: a(fullword where length of value is returned)
Output value: a(string containing the value)
Output fc: a(12 byte feedback code area)

Examples

call ceeenv,(f1,nL,Name,vL,Value,fc),vl

� Or, in keeping with our reentrant style:

call ceeenv,(f1,nL,Name,vL,Value,fc),vl,mf=(e,plist)

� In the reentrant case, at least, parameters nL, Name, vL, and Value
will have to be filled in before call

� In both cases, check fc afterwards, to ensure the call was
successful

Copyright � 2012 by Steven H. Comstock 37 Basic Processing

Accessing Environment Variables - CEEENV, 2

� So, to flesh it out a little in the style we have been working with ...

� In our non-modifyable area we add:

f1 dc f'1' - request retrieve value
zeros dc 3f'0' - for fc compares
varname1 dc c'QUERY_STRING'

� Then the prep and call might look like this:

la 2,varname1
st 2,Name
la 2,l'varname1
st 2,nL
xc fc,fc
call ceeenv,(f1,nL,Name,vL,Value,fc), x

vl,mf=(e,plist)
clc fc,zeros check for success
jne no_val

*
* if get here, Value contains address of string
* and vL contains length of string

� Finally, our modifyable DSECT area would include these new
items:

Name ds f
nL ds f
Value ds f
vL ds f
fc ds cl12

Copyright � 2012 by Steven H. Comstock 38 Basic Processing

Accessing Environment Variables - getenv

� The getenv C function takes as input a null-terminated string
containing the name of the environment variable you are interested
in

� And returns in R15 either the address of the null-terminated
string containing the value of the variable, or binary zeros if the
variable does not exist

� So we would set up the variable name as:

varname1 dc c'QUERY_STRING',x'00'

� And call the function this way:

call getenv(varname1),vl,mf=(e,plist)
ltr 3,15
jz no_val

* get here and r3 contains the address of the
* null-terminated value of the environment variable

� Now, let's take a look at how we might display the value we've found
- or how to deal with a variable with no value

� Our approach is to write out some HTML

� And we will demonstrate using both printf and bpx1wrt

Copyright � 2012 by Steven H. Comstock 39 Basic Processing

Displaying Environment Variables

� Let's suppose for a minute that you are only interested in displaying
the value in an environment variable

� Which could be the case during development, debugging, or our
next lab(!)

� We can use either printf or bpx1wrt to display a variable, regardless
of how we got to the value

� However, if you use getenv, the result is returned as a
null-terminated string - easy to use from printf

� If you use ceeenv, you get back the string and its length - easy
to use from bpx1wrt

� We will assume from now on that you have used getenv, since
that is available in older systems and ceeenv is only available in
newer systems

� Converting from ceeenv usage to getenv usage is left as an
exercise for the student

� For now we can assume we have R3 pointing to the value of an
environment variable

� And that value is a null-terminated string

Copyright � 2012 by Steven H. Comstock 40 Basic Processing

Displaying Environment Variables Using printf

� To use the printf() function to display a string, you usually pass a
message string which includes a "%s" everywhere you want the
function to fill in a string value

� Followed by a pointer to a null-terminated string for each %s in
your message string (matching is done in order from left to right)

� So building on previous work, we would have this in our
non-modifyable storage:

varname1 dc c'QUERY_STRING',x'00'
var_msg dc c'%s = %s
',x'00'
err_msg1 dc c'%s: ** variable not set **
',x'00'

� That is, both the variable display message and the error
message are HTML with text followed by a break

� Since we are using getenv and printf, we need to terminate the
strings by null characters

� Note the %s entries; now if we are successful we issue:

call printf,(var_msg,varname1,(3)),vl,mf=(e,plist)

� and if we are unsuccessful we could do:

call printf,(err_msg,varname1),vl,mf=(e,plist)

� Note that printf always writes to stdout

Copyright � 2012 by Steven H. Comstock 41 Basic Processing

Displaying Environment Variables Using BPX1WRT

� To use bpx1wrt for this task takes a little more work: you must build
up the pieces of the message yourself in a buffer and then write the
buffer to stdout

� And we start by using the strlen() function to extract the length of
the variable we currently have the address of in R3

� To put it in context:

varname1 dc c'QUERY_STRING',x'00'
stdout dc f'1'
spaces dc cl256' '
err_msg dc c'** variable not set **'
move_var1 mvc line_out+l'varname1+4(0),0(3)

.

.

.
call getenv,(varname1),mf=(e,plist)
ltr 3,15 c(3)=a(QUERY_STRING)
jz no_val

call strlen,((3)),mf=(e,plist)
lr 4,15 c(4)=L'QUERY_STRING
mvc line_out,spaces
mvc line_out(l'varname1),varname1
mvi line_out+l'varname1+2,c'='

bctr 4,0
ex 4,move_var1
la 1,line_out+l'varname1+3 point after =

la 2,l'varname1+5(4)
st 2,num_bytes
la 2,line_out
st 2,buffer_ptr
bras 2,common_write

Copyright � 2012 by Steven H. Comstock 42 Basic Processing

Displaying Environment Variables Using BPX1WRT, 2

� And down in our modifyable areas we see, in addition to our earlier
items:

line_out ds cl256

� IMPORTANT NOTE: Here we have deliberately set up for a
maximum of 256 characters in a message

� But if a printf() with variables or an ex of a mvc generates a
longer string, you could do damage to other data items - a
variation of the infamous buffer overrun problem

� SO YOU MUST KNOW YOUR DATA AND PLAN
ACCORDINGLY

Copyright � 2012 by Steven H. Comstock 43 Basic Processing

Displaying Environment Variables Using BPX1WRT, 3

� Now, if a variable is not set when using bpx1wrt, we might have:

no_val ds 0h
mvc line_out,spaces
la 6,line_out target
lr 7,4 bytes to move
lr 8,2 source (variable name)
lr 9,4 bytes to move
lr 2,4 save var name length
mvcl 6,8
mvi 2(6),c'='
la 6,4(6) point after varname1 =

mvc 0(l'err_msg,6),err_msg
la 2,l'err_msg+5(2)
st 2,num_bytes
la 2,line_out
st 2,buffer_ptr
bras 2,common_write

Copyright � 2012 by Steven H. Comstock 44 Basic Processing

Writing to stderr

� When a message really should go to stderr instead of stdout, you
have two choices, again:

� Use the LE CEEMOUT callable service

� Use bpx1wrt with a routing to stderr (fullword '2') instead of stdout
(fullword '1')

� If you will be using bpx1wrt, you can use the sprintf() C function to
format a buffer in the same way that printf() does; for example:

call sprintf,(work_out,err_msg1,(2)), x
vl,mf=(e,plist)

la 2,work_out
st 2,buffer_ptr
la 2,l'err_msg1+1(6)
st 2,num_bytes
call bpx1wrt,(stderr,buffer_ptr, x

buffer_alet,num_bytes, x
return_val,return_co,reason_co), x
vl,mf=(e,plist)

� Where work_out is a buffer in our modifyable area and
everything else is stuff from before

� Lines written to stderr, however, end up in the cgi-error log for the
HTTP server, not always easy to get to

� Note that you can mix and match the use of printf(), getenv(), ceeenv,
strlen(), bpx1wrt, sprintf(), ceemout all in the same [LE-conforming]
program, as needed, under the HTTP server

� You only need to be aware of the formats of arguments

� The Apache server does not let you mix and match so freely

Copyright � 2012 by Steven H. Comstock 45 Basic Processing

bpx1wrt vs. printf()

� As with most techniques in programming, these two approaches for
writing to stdout each have their own pros and cons

bpx1wrt

� This is a z/OS UNIX kernel command; not dependent on
C-specific interfaces

� More arguments (so more set up)

� Strings must not be null-terminated

� May build up a line by bpx1wrt-ing each piece separately;
required if you intend to format one or more of the pieces

� May appear in LE-conforming or non-LE-conforming programs

� May use to write to stderr also

printf()

� C-specific

� Fewer arguments

� String arguments (both in the message string and in any strings
passed to match up to %s formats) must be null-terminated

� Formating is done based on your arguments and format
indicators

� So must have all the pieces in place before calling printf()

� Requires program to be LE-conforming

� Always writes to stdout

Copyright � 2012 by Steven H. Comstock 46 Basic Processing

Stylesheets and CGIs

� Generally, a static HTML page is served from a particular directory,
and CGIs are run out of a different directory

� When a CGI references a stylesheet and it is a relative reference (for
example: <link ... href="cgi-style1.css" type="text/css">), the
stylesheet is presumed to be found in the CGI directory

� But because of the configuration values normally set up, files
found in the CGI directory are presumed to be executables and
the server tries to run the stylesheet instead of just pass it on to
the server

Copyright � 2012 by Steven H. Comstock 47 Basic Processing

Stylesheets and CGIs, 2

� To fix this, you need to provide a mapping in your configuration
files, and there are several ways to go, including these two:

� Create a string that maps to a common, shared directory for
styles; here's an example:

Pass /t-css/* /usr/lpp/testing/*

� Then in your CGI your link to a stylesheet might be:

<link ... href="/t-css/cgi-style1.css" ... >

� Create a string that maps to one of your directories, maybe even
your CGI directory; for example:

Pass /s-css/* /u/scomsto/CGI/*

� Then in your CGI your link to a stylesheet might be:

<link ... href="/s-css/cgi-style1.css" ... >

� Of course, this is normally done by a systems person, and not
lightly because it requires recycling the HTTP server

� So you build one mapping per person, and have each person
work in their own directory or

� You build a single, shared mapping and everyone uses a shared
directory or a combination

Copyright � 2012 by Steven H. Comstock 48 Basic Processing

Computer Exercise: Writing Out HTML Pages

In this exercise we work on displaying some environment variable values, and
laying the base for our future work. All the source code here is in your
TR.SOURCE library. To Assemble and bind, use member ASMCGIA in your
TR.CNTL library, just change the value of the SET O= line to point to the code
to work with.

The source code to work with:

TTFPREA - writes out the first HTML headers, as discussed on page 33
TTFPREP - same as above but uses printf() instead of bpx1wrt

TCAVARP - uses printf() for writing to stdout; calls TTFPREP
TCAVARB - uses bpx1wrt for writing to stdout; calls TTFPREA

The last two programs output a page that displays the values of the environment
variables QUERY_STRING and SERVER_SOFTWARE.

Your tasks:

Change TTFPREA and TTFPREP, fixing up the IP / system name and
userid; then Assemble and bind these programs.

Change TCAVARP or TCAVARB (or both, if you are so inclined) to
add displays of the contents of REMOTE_ADDR and
REMOTE_USER. Assemble and bind.

Deploy TCAVARx, as discussed earlier.

Get into OMVS, cd to your html library, and oedit test_display.html,
changing both occurrences of SCOMSTO to be your CGI directory
mapping id.

Test your work by pointing your browser to AsmCGI_Labs.html:

* Select option 2, which takes you to test_display.html

* This page asks for a userid and password (you can use
anything, as they are not checked - yet) and for
you to select the name of the CGI you want to test;
Fill these items in and select Submit; you should see
the output from your CGI.

Take some time and study the outputs, especially for QUERY_STRING.

Copyright � 2012 by Steven H. Comstock 49 Basic Processing

